C. Stary, Claudia Kaar, M. Jahn
{"title":"以有形CPS教育的双重学习体验为特色:同步物联网-数字孪生系统","authors":"C. Stary, Claudia Kaar, M. Jahn","doi":"10.1145/3459926.3464755","DOIUrl":null,"url":null,"abstract":"Cyber-Physical System (CPS) development becomes challenging when digital representations, so-called Digital Twin (DT) models, are synchronized with physical counterparts for real-time design and control. Learner support requires transparent and intelligible capacity building tools to grasp the idea of such complex systems and develop integrated design and engineering skills. Tangible components can help as physical cognitive artifacts for Internet-of-Things (IoT) applications being part of CPS. However, the intertwining of physical and digital elements requires a didactically grounded vocabulary and development concept to learn with tangible artifacts as mental representation. In this paper we introduce an integrated tangible design and engineering learning support system. It synchronizes physical IoT components with their DT representation, as composed by means of M5Stack (m5stack.com), UIFlow© (flow.m5stack.com) using Blockly for visual programming, and the diagrammatic D3j-editor (D3js.org) for editing DTs and monitoring/controlling CPS behavior. Learners can design and engineer a CPS either via tangible IoT (control) elements, or digitally. Prepared use cases from smart home management and home healthcare serve as teasers for actively engaging learners in CPS development tasks.","PeriodicalId":171639,"journal":{"name":"Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Featuring Dual Learning Experiences in Tangible CPS Education: A Synchronized Internet-of-Things – Digital-Twin System\",\"authors\":\"C. Stary, Claudia Kaar, M. Jahn\",\"doi\":\"10.1145/3459926.3464755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical System (CPS) development becomes challenging when digital representations, so-called Digital Twin (DT) models, are synchronized with physical counterparts for real-time design and control. Learner support requires transparent and intelligible capacity building tools to grasp the idea of such complex systems and develop integrated design and engineering skills. Tangible components can help as physical cognitive artifacts for Internet-of-Things (IoT) applications being part of CPS. However, the intertwining of physical and digital elements requires a didactically grounded vocabulary and development concept to learn with tangible artifacts as mental representation. In this paper we introduce an integrated tangible design and engineering learning support system. It synchronizes physical IoT components with their DT representation, as composed by means of M5Stack (m5stack.com), UIFlow© (flow.m5stack.com) using Blockly for visual programming, and the diagrammatic D3j-editor (D3js.org) for editing DTs and monitoring/controlling CPS behavior. Learners can design and engineer a CPS either via tangible IoT (control) elements, or digitally. Prepared use cases from smart home management and home healthcare serve as teasers for actively engaging learners in CPS development tasks.\",\"PeriodicalId\":171639,\"journal\":{\"name\":\"Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459926.3464755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459926.3464755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Featuring Dual Learning Experiences in Tangible CPS Education: A Synchronized Internet-of-Things – Digital-Twin System
Cyber-Physical System (CPS) development becomes challenging when digital representations, so-called Digital Twin (DT) models, are synchronized with physical counterparts for real-time design and control. Learner support requires transparent and intelligible capacity building tools to grasp the idea of such complex systems and develop integrated design and engineering skills. Tangible components can help as physical cognitive artifacts for Internet-of-Things (IoT) applications being part of CPS. However, the intertwining of physical and digital elements requires a didactically grounded vocabulary and development concept to learn with tangible artifacts as mental representation. In this paper we introduce an integrated tangible design and engineering learning support system. It synchronizes physical IoT components with their DT representation, as composed by means of M5Stack (m5stack.com), UIFlow© (flow.m5stack.com) using Blockly for visual programming, and the diagrammatic D3j-editor (D3js.org) for editing DTs and monitoring/controlling CPS behavior. Learners can design and engineer a CPS either via tangible IoT (control) elements, or digitally. Prepared use cases from smart home management and home healthcare serve as teasers for actively engaging learners in CPS development tasks.