Karl Granström, Stephan Renter, M. Fatemi, L. Svensson
{"title":"使用Velodyne数据的行人跟踪-扩展对象跟踪的随机优化","authors":"Karl Granström, Stephan Renter, M. Fatemi, L. Svensson","doi":"10.1109/IVS.2017.7995696","DOIUrl":null,"url":null,"abstract":"Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. High resolution sensors, such as automotive radar and lidar, leads to the so called extended target tracking problem, in which there are multiple detections per tracked object. For computationally feasible multiple extended target tracking, the data association problem must be handled. Previous work has relied on the use of clustering algorithms, together with assignment algorithms, to achieve this. In this paper we present a stochastic optimisation method that directly maximises the desired likelihood function, and solves the problem in a single step, rather than two steps (clustering+assignment). The proposed method is evaluated against previous work in an experiment where Velodyne data is used to track pedestrians, and the results clearly show that the proposed method achieves the best performance, especially in challenging scenarios.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Pedestrian tracking using Velodyne data — Stochastic optimization for extended object tracking\",\"authors\":\"Karl Granström, Stephan Renter, M. Fatemi, L. Svensson\",\"doi\":\"10.1109/IVS.2017.7995696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. High resolution sensors, such as automotive radar and lidar, leads to the so called extended target tracking problem, in which there are multiple detections per tracked object. For computationally feasible multiple extended target tracking, the data association problem must be handled. Previous work has relied on the use of clustering algorithms, together with assignment algorithms, to achieve this. In this paper we present a stochastic optimisation method that directly maximises the desired likelihood function, and solves the problem in a single step, rather than two steps (clustering+assignment). The proposed method is evaluated against previous work in an experiment where Velodyne data is used to track pedestrians, and the results clearly show that the proposed method achieves the best performance, especially in challenging scenarios.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pedestrian tracking using Velodyne data — Stochastic optimization for extended object tracking
Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. High resolution sensors, such as automotive radar and lidar, leads to the so called extended target tracking problem, in which there are multiple detections per tracked object. For computationally feasible multiple extended target tracking, the data association problem must be handled. Previous work has relied on the use of clustering algorithms, together with assignment algorithms, to achieve this. In this paper we present a stochastic optimisation method that directly maximises the desired likelihood function, and solves the problem in a single step, rather than two steps (clustering+assignment). The proposed method is evaluated against previous work in an experiment where Velodyne data is used to track pedestrians, and the results clearly show that the proposed method achieves the best performance, especially in challenging scenarios.