基于提升搜索和寻址算子的粒子群非凸经济负荷调度

V. K. Jadoun, N. Gupta, A. Swarnkar, K. R. Niazi
{"title":"基于提升搜索和寻址算子的粒子群非凸经济负荷调度","authors":"V. K. Jadoun, N. Gupta, A. Swarnkar, K. R. Niazi","doi":"10.1109/RDCAPE.2015.7281379","DOIUrl":null,"url":null,"abstract":"This paper presents a stochastic-based method to solve the non-convex economic load dispatch problem for minimizing fuel cost of thermal units. Several measures have been taken to improve the computational efficiency of the conventional Particle Swarm Optimization (PSO). The cognitive behavior of particle is split in two components to check the best and poor experience of particles. The control parameters of the PSO are tuned to their optimal values. The modulations in inertia weight are controlled in accordance to a new truncated sinusoidal function. A correction algorithm has been proposed to transform infeasible particles into feasible ones. The effectiveness of the proposed PSO is tested on different standard thermal generating systems. The application results seem to be promising when compared with other existing methods.","PeriodicalId":403256,"journal":{"name":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-convex economic load dispatch using particle swarm optimization with elevated search and addressed operators\",\"authors\":\"V. K. Jadoun, N. Gupta, A. Swarnkar, K. R. Niazi\",\"doi\":\"10.1109/RDCAPE.2015.7281379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a stochastic-based method to solve the non-convex economic load dispatch problem for minimizing fuel cost of thermal units. Several measures have been taken to improve the computational efficiency of the conventional Particle Swarm Optimization (PSO). The cognitive behavior of particle is split in two components to check the best and poor experience of particles. The control parameters of the PSO are tuned to their optimal values. The modulations in inertia weight are controlled in accordance to a new truncated sinusoidal function. A correction algorithm has been proposed to transform infeasible particles into feasible ones. The effectiveness of the proposed PSO is tested on different standard thermal generating systems. The application results seem to be promising when compared with other existing methods.\",\"PeriodicalId\":403256,\"journal\":{\"name\":\"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RDCAPE.2015.7281379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2015.7281379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种求解火电机组燃料成本最小的非凸经济负荷调度问题的随机方法。为了提高传统粒子群优化算法的计算效率,采取了一些措施。将粒子的认知行为分为两部分来检验粒子的最佳体验和最差体验。将粒子群的控制参数调整到最优值。根据一个新的截断正弦函数来控制惯性权重的调制。提出了一种将不可行粒子转化为可行粒子的校正算法。在不同标准的热力发电系统上测试了该算法的有效性。与其他现有方法相比,应用结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-convex economic load dispatch using particle swarm optimization with elevated search and addressed operators
This paper presents a stochastic-based method to solve the non-convex economic load dispatch problem for minimizing fuel cost of thermal units. Several measures have been taken to improve the computational efficiency of the conventional Particle Swarm Optimization (PSO). The cognitive behavior of particle is split in two components to check the best and poor experience of particles. The control parameters of the PSO are tuned to their optimal values. The modulations in inertia weight are controlled in accordance to a new truncated sinusoidal function. A correction algorithm has been proposed to transform infeasible particles into feasible ones. The effectiveness of the proposed PSO is tested on different standard thermal generating systems. The application results seem to be promising when compared with other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信