纠错码保护的数据处理单元

N. C. Laurenciu, T. Gupta, V. Savin, S. Cotofana
{"title":"纠错码保护的数据处理单元","authors":"N. C. Laurenciu, T. Gupta, V. Savin, S. Cotofana","doi":"10.1145/2950067.2950093","DOIUrl":null,"url":null,"abstract":"The significant uncertainty associated with current nanodevices fabrication and operation, calls for a circuit design paradigm change, which ought to actively embrace the inherently nanodevice unreliability to generate overall circuit architectures able to perform reliable computation. While for data storage units viable solutions exist, Data Processing Units (DPUs) are not amenable to a similar line of reasoning. The typical approach undertaken for fault-tolerant DPUs relies on modular redundancy (e.g., spatial, temporal), which while being effective from an error tolerance perspective, generally involves high area and/or performance impairments. This paper proposes a generic methodology to obtain reliable DPU implementations built with unreliable components by intimately intertwining Error Correcting Codes (ECCs) codecs with the DPU functionality. The ECC protected DPU architecture is derived cluster-wise with area and reliability constraints, by exploiting dependence relations (logical and w.r.t. shared area) between internal signals pertaining to the DPU and the ECC codec. To evaluate the error rate and performance implications, a multitude of test corners were considered (e.g., gate criticality, ECC type and structure, faulty and low complexity decoder, time-space redundancy) for an ECC protected 6-bit adder architecture. Simulation results reveal that the ECC embedding approach can be effective from both error rate and area perspective, for the Pareto designs with performance figures of merit situated in-between consecutive modular redundancy based design corresponding curves. The proposed approach is generic from the coding point of view, scalable, and enables a fine grained control of the DPU desired reliability degree and area overhead.","PeriodicalId":213559,"journal":{"name":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Error Correction Code protected Data Processing Units\",\"authors\":\"N. C. Laurenciu, T. Gupta, V. Savin, S. Cotofana\",\"doi\":\"10.1145/2950067.2950093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significant uncertainty associated with current nanodevices fabrication and operation, calls for a circuit design paradigm change, which ought to actively embrace the inherently nanodevice unreliability to generate overall circuit architectures able to perform reliable computation. While for data storage units viable solutions exist, Data Processing Units (DPUs) are not amenable to a similar line of reasoning. The typical approach undertaken for fault-tolerant DPUs relies on modular redundancy (e.g., spatial, temporal), which while being effective from an error tolerance perspective, generally involves high area and/or performance impairments. This paper proposes a generic methodology to obtain reliable DPU implementations built with unreliable components by intimately intertwining Error Correcting Codes (ECCs) codecs with the DPU functionality. The ECC protected DPU architecture is derived cluster-wise with area and reliability constraints, by exploiting dependence relations (logical and w.r.t. shared area) between internal signals pertaining to the DPU and the ECC codec. To evaluate the error rate and performance implications, a multitude of test corners were considered (e.g., gate criticality, ECC type and structure, faulty and low complexity decoder, time-space redundancy) for an ECC protected 6-bit adder architecture. Simulation results reveal that the ECC embedding approach can be effective from both error rate and area perspective, for the Pareto designs with performance figures of merit situated in-between consecutive modular redundancy based design corresponding curves. The proposed approach is generic from the coding point of view, scalable, and enables a fine grained control of the DPU desired reliability degree and area overhead.\",\"PeriodicalId\":213559,\"journal\":{\"name\":\"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2950067.2950093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950067.2950093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当前纳米器件制造和操作的不确定性要求电路设计范式的改变,这应该积极地接受纳米器件固有的不可靠性,以产生能够执行可靠计算的整体电路架构。虽然对于数据存储单元存在可行的解决方案,但数据处理单元(dpu)不适合类似的推理路线。容错dpu采用的典型方法依赖于模块化冗余(例如,空间、时间),虽然从容错角度来看是有效的,但通常涉及高面积和/或性能损害。本文提出了一种通用方法,通过将纠错码(ecc)编解码器与DPU功能紧密交织在一起,来获得由不可靠组件构建的可靠DPU实现。通过利用与DPU和ECC编解码器相关的内部信号之间的依赖关系(逻辑和w.r.t.共享区域),ECC保护的DPU架构派生出具有面积和可靠性约束的集群。为了评估错误率和性能影响,考虑了ECC保护的6位加法器架构的许多测试角(例如,门临界性,ECC类型和结构,故障和低复杂度解码器,时空冗余)。仿真结果表明,对于性能指标位于连续模冗余设计曲线之间的Pareto设计,ECC嵌入方法在错误率和面积方面都是有效的。从编码的角度来看,所提出的方法是通用的,可扩展的,并且能够对所需的DPU可靠性程度和面积开销进行细粒度控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Correction Code protected Data Processing Units
The significant uncertainty associated with current nanodevices fabrication and operation, calls for a circuit design paradigm change, which ought to actively embrace the inherently nanodevice unreliability to generate overall circuit architectures able to perform reliable computation. While for data storage units viable solutions exist, Data Processing Units (DPUs) are not amenable to a similar line of reasoning. The typical approach undertaken for fault-tolerant DPUs relies on modular redundancy (e.g., spatial, temporal), which while being effective from an error tolerance perspective, generally involves high area and/or performance impairments. This paper proposes a generic methodology to obtain reliable DPU implementations built with unreliable components by intimately intertwining Error Correcting Codes (ECCs) codecs with the DPU functionality. The ECC protected DPU architecture is derived cluster-wise with area and reliability constraints, by exploiting dependence relations (logical and w.r.t. shared area) between internal signals pertaining to the DPU and the ECC codec. To evaluate the error rate and performance implications, a multitude of test corners were considered (e.g., gate criticality, ECC type and structure, faulty and low complexity decoder, time-space redundancy) for an ECC protected 6-bit adder architecture. Simulation results reveal that the ECC embedding approach can be effective from both error rate and area perspective, for the Pareto designs with performance figures of merit situated in-between consecutive modular redundancy based design corresponding curves. The proposed approach is generic from the coding point of view, scalable, and enables a fine grained control of the DPU desired reliability degree and area overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信