西德克萨斯中质原油现货价格的多模型预测

M. Emery, L. Ryan, B. Whiting
{"title":"西德克萨斯中质原油现货价格的多模型预测","authors":"M. Emery, L. Ryan, B. Whiting","doi":"10.2139/ssrn.2079341","DOIUrl":null,"url":null,"abstract":"We measure the performance of Multi Model Inference (MMI) forecasts compared to predictions made from a single model for crude oil prices. We forecast the West Texas Intermediate (WTI) crude oil spot prices using total OECD petroleum inventory levels, surplus production capacity, the CBOE Volatility Index (VIX) and an implementation of a Subset Autoregression with Exogenous Variables (SARX). Coe\u000ecient and standard error estimates obtained from SARX determined by conditioning on a single \"best model\" ignore model uncertainty and result in under-estimated standard errors and over-estimated coe\u000ecients. We find that the MMI forecast outperforms a single model forecast for both in and out of sample data sets over a variety of statistical performance measures, and further and that weighting models according to the BIC generally yields superior results both in and out of sample when compared to the AIC.","PeriodicalId":343955,"journal":{"name":"SRPN: Oil (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi Model Forecasts of the West Texas Intermediate Crude Oil Spot Price\",\"authors\":\"M. Emery, L. Ryan, B. Whiting\",\"doi\":\"10.2139/ssrn.2079341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measure the performance of Multi Model Inference (MMI) forecasts compared to predictions made from a single model for crude oil prices. We forecast the West Texas Intermediate (WTI) crude oil spot prices using total OECD petroleum inventory levels, surplus production capacity, the CBOE Volatility Index (VIX) and an implementation of a Subset Autoregression with Exogenous Variables (SARX). Coe\\u000ecient and standard error estimates obtained from SARX determined by conditioning on a single \\\"best model\\\" ignore model uncertainty and result in under-estimated standard errors and over-estimated coe\\u000ecients. We find that the MMI forecast outperforms a single model forecast for both in and out of sample data sets over a variety of statistical performance measures, and further and that weighting models according to the BIC generally yields superior results both in and out of sample when compared to the AIC.\",\"PeriodicalId\":343955,\"journal\":{\"name\":\"SRPN: Oil (Topic)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SRPN: Oil (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2079341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRPN: Oil (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2079341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们将多模型推断(MMI)预测的性能与单一模型对原油价格的预测进行了比较。我们使用经合组织总石油库存水平、剩余产能、芝加哥期权交易所波动率指数(VIX)和外生变量子集自回归(SARX)的实施来预测西德克萨斯中质原油(WTI)现货价格。通过单个“最佳模型”的条件作用确定的SARX获得的Coe客户和标准误差估计忽略了模型的不确定性,导致标准误差估计过低,Coe客户估计过高。我们发现,在各种统计性能度量中,MMI预测在样本内外数据集上都优于单一模型预测,并且与AIC相比,根据BIC的加权模型通常在样本内外都产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi Model Forecasts of the West Texas Intermediate Crude Oil Spot Price
We measure the performance of Multi Model Inference (MMI) forecasts compared to predictions made from a single model for crude oil prices. We forecast the West Texas Intermediate (WTI) crude oil spot prices using total OECD petroleum inventory levels, surplus production capacity, the CBOE Volatility Index (VIX) and an implementation of a Subset Autoregression with Exogenous Variables (SARX). Coecient and standard error estimates obtained from SARX determined by conditioning on a single "best model" ignore model uncertainty and result in under-estimated standard errors and over-estimated coecients. We find that the MMI forecast outperforms a single model forecast for both in and out of sample data sets over a variety of statistical performance measures, and further and that weighting models according to the BIC generally yields superior results both in and out of sample when compared to the AIC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信