A3B5化合物的自由空穴自旋进动轨迹

A. Dargys
{"title":"A3B5化合物的自由空穴自旋进动轨迹","authors":"A. Dargys","doi":"10.1117/12.726411","DOIUrl":null,"url":null,"abstract":"Spin precession of a ballistic-hole when external magnetic field is absent and when the hole freely propagates in either heavy- or light-mass band is considered. The spin precession is due to linear in wave vector terms in the Luttinger-Kohn Hamiltonian. It was found that in contrast to conduction-band the valence band spin precession orbits are not circular. They are either ellipses or lines for light- and heavy-holes, respectively. The results of the paper can be applied to describe hole spin-dynamics in A3B5 compounds, for example, in simulation of spin-FETs by Monte Carlo method.","PeriodicalId":273853,"journal":{"name":"International Conference on Advanced Optical Materials and Devices","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free-hole spin precession trajectories in A3B5 compounds\",\"authors\":\"A. Dargys\",\"doi\":\"10.1117/12.726411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin precession of a ballistic-hole when external magnetic field is absent and when the hole freely propagates in either heavy- or light-mass band is considered. The spin precession is due to linear in wave vector terms in the Luttinger-Kohn Hamiltonian. It was found that in contrast to conduction-band the valence band spin precession orbits are not circular. They are either ellipses or lines for light- and heavy-holes, respectively. The results of the paper can be applied to describe hole spin-dynamics in A3B5 compounds, for example, in simulation of spin-FETs by Monte Carlo method.\",\"PeriodicalId\":273853,\"journal\":{\"name\":\"International Conference on Advanced Optical Materials and Devices\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Optical Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.726411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Optical Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.726411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了无外加磁场和在重质量带或轻质量带中自由传播的弹道孔的自旋进动。在Luttinger-Kohn哈密顿量中,自旋进动在波矢量项上是线性的。与导带相比,价带自旋进动轨道不是圆形的。对于轻孔和重孔,它们分别是椭圆或直线。本文的结果可用于描述A3B5化合物中的空穴自旋动力学,例如用蒙特卡罗方法模拟自旋场效应管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free-hole spin precession trajectories in A3B5 compounds
Spin precession of a ballistic-hole when external magnetic field is absent and when the hole freely propagates in either heavy- or light-mass band is considered. The spin precession is due to linear in wave vector terms in the Luttinger-Kohn Hamiltonian. It was found that in contrast to conduction-band the valence band spin precession orbits are not circular. They are either ellipses or lines for light- and heavy-holes, respectively. The results of the paper can be applied to describe hole spin-dynamics in A3B5 compounds, for example, in simulation of spin-FETs by Monte Carlo method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信