部件级对象识别

J. Krivic, F. Solina
{"title":"部件级对象识别","authors":"J. Krivic, F. Solina","doi":"10.1109/VIPROM.2002.1026679","DOIUrl":null,"url":null,"abstract":"This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover- and-select paradigm. Using an interpretation tree, the presence of an object in the scene from the model database can be hypothesized. These hypotheses are verified by projecting and refitting the object model to the range image which at the same time enables a better localization of the object in the scene.","PeriodicalId":223771,"journal":{"name":"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Part-level object recognition\",\"authors\":\"J. Krivic, F. Solina\",\"doi\":\"10.1109/VIPROM.2002.1026679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover- and-select paradigm. Using an interpretation tree, the presence of an object in the scene from the model database can be hypothesized. These hypotheses are verified by projecting and refitting the object model to the range image which at the same time enables a better localization of the object in the scene.\",\"PeriodicalId\":223771,\"journal\":{\"name\":\"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIPROM.2002.1026679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIPROM.2002.1026679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用超二次建立模型进行目标识别的技术。超二次曲面是一种适合局部级对象表示的三维模型,它使用恢复和选择范式从距离图像中重建。使用解释树,可以假设来自模型数据库的对象在场景中的存在。通过将目标模型投影并重新调整到距离图像来验证这些假设,同时可以更好地定位场景中的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part-level object recognition
This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover- and-select paradigm. Using an interpretation tree, the presence of an object in the scene from the model database can be hypothesized. These hypotheses are verified by projecting and refitting the object model to the range image which at the same time enables a better localization of the object in the scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信