NAND闪存设备的数据中心垃圾收集

Chundong Wang, Q. Wei, Mingdi Xue, Jun Yang, Cheng Chen
{"title":"NAND闪存设备的数据中心垃圾收集","authors":"Chundong Wang, Q. Wei, Mingdi Xue, Jun Yang, Cheng Chen","doi":"10.1109/NVMSA.2015.7304360","DOIUrl":null,"url":null,"abstract":"Garbage collection has been concerned for NAND flash devices for years. The ever-increasing utilization of flash device demands more effective and efficient garbage collection strategies. This paper proposes a novel approach, namely Data-centrIc Garbage collection (DIG). DIG online forecasts update intervals for data and clusters them accordingly into groups in a lightweight way. Data with similar update intervals form a group and are stored together. Obsolete data and valid data are hence prevented from being mixed. Moreover, DIG takes advantage of clustering to further separate data and select promising victims for reclamations. Experiments show that DIG can significantly reduce the overheads of garbage collection by 94.3% and 73.5% on average, respectively, compared to two state-of-the-art algorithms.","PeriodicalId":353528,"journal":{"name":"2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data-centric garbage collection for NAND flash devices\",\"authors\":\"Chundong Wang, Q. Wei, Mingdi Xue, Jun Yang, Cheng Chen\",\"doi\":\"10.1109/NVMSA.2015.7304360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garbage collection has been concerned for NAND flash devices for years. The ever-increasing utilization of flash device demands more effective and efficient garbage collection strategies. This paper proposes a novel approach, namely Data-centrIc Garbage collection (DIG). DIG online forecasts update intervals for data and clusters them accordingly into groups in a lightweight way. Data with similar update intervals form a group and are stored together. Obsolete data and valid data are hence prevented from being mixed. Moreover, DIG takes advantage of clustering to further separate data and select promising victims for reclamations. Experiments show that DIG can significantly reduce the overheads of garbage collection by 94.3% and 73.5% on average, respectively, compared to two state-of-the-art algorithms.\",\"PeriodicalId\":353528,\"journal\":{\"name\":\"2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NVMSA.2015.7304360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NVMSA.2015.7304360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多年来,人们一直关注NAND闪存设备的垃圾收集问题。随着flash设备利用率的不断提高,需要更有效的垃圾收集策略。本文提出了一种新的方法,即以数据为中心的垃圾收集(DIG)。DIG在线预测数据的更新间隔,并以轻量级的方式将它们相应地分组。具有相似更新间隔的数据组成一组并存储在一起。因此,可以防止过期数据和有效数据的混合。此外,DIG利用聚类进一步分离数据并选择有希望的受害者进行开垦。实验表明,与两种最先进的算法相比,DIG可以显著降低垃圾收集的开销,平均分别降低94.3%和73.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-centric garbage collection for NAND flash devices
Garbage collection has been concerned for NAND flash devices for years. The ever-increasing utilization of flash device demands more effective and efficient garbage collection strategies. This paper proposes a novel approach, namely Data-centrIc Garbage collection (DIG). DIG online forecasts update intervals for data and clusters them accordingly into groups in a lightweight way. Data with similar update intervals form a group and are stored together. Obsolete data and valid data are hence prevented from being mixed. Moreover, DIG takes advantage of clustering to further separate data and select promising victims for reclamations. Experiments show that DIG can significantly reduce the overheads of garbage collection by 94.3% and 73.5% on average, respectively, compared to two state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信