G. Di Capua, J. A. Aguado Sanchez, A. Triviño Cabrera, D. Fernandez Cabrera, N. Femia, G. Petrone, G. Spagnuolo
{"title":"基于损耗的电动汽车无线充电器分析","authors":"G. Di Capua, J. A. Aguado Sanchez, A. Triviño Cabrera, D. Fernandez Cabrera, N. Femia, G. Petrone, G. Spagnuolo","doi":"10.1109/SMACD.2015.7301677","DOIUrl":null,"url":null,"abstract":"Contactless charging systems are becoming the most convenient and safest way to refill Electric Vehicles (EVs) batteries. Wireless Power Transfer (WPT) has been successfully adopted in EVs high power applications to efficiently deliver energy over a relatively large air gap. In order to predict the realistic performance of an EV wireless charger, the impact of real components tolerances and semiconductor devices losses must be considered. In this paper, a model for the analysis of the influence of semiconductor devices losses and of resonant devices parameters uncertainty is discussed. The model is validated through PSIM simulations of a 3.7kW/85kHz WPT system.","PeriodicalId":207878,"journal":{"name":"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A losses-based analysis for electric vehicle wireless chargers\",\"authors\":\"G. Di Capua, J. A. Aguado Sanchez, A. Triviño Cabrera, D. Fernandez Cabrera, N. Femia, G. Petrone, G. Spagnuolo\",\"doi\":\"10.1109/SMACD.2015.7301677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contactless charging systems are becoming the most convenient and safest way to refill Electric Vehicles (EVs) batteries. Wireless Power Transfer (WPT) has been successfully adopted in EVs high power applications to efficiently deliver energy over a relatively large air gap. In order to predict the realistic performance of an EV wireless charger, the impact of real components tolerances and semiconductor devices losses must be considered. In this paper, a model for the analysis of the influence of semiconductor devices losses and of resonant devices parameters uncertainty is discussed. The model is validated through PSIM simulations of a 3.7kW/85kHz WPT system.\",\"PeriodicalId\":207878,\"journal\":{\"name\":\"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2015.7301677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2015.7301677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A losses-based analysis for electric vehicle wireless chargers
Contactless charging systems are becoming the most convenient and safest way to refill Electric Vehicles (EVs) batteries. Wireless Power Transfer (WPT) has been successfully adopted in EVs high power applications to efficiently deliver energy over a relatively large air gap. In order to predict the realistic performance of an EV wireless charger, the impact of real components tolerances and semiconductor devices losses must be considered. In this paper, a model for the analysis of the influence of semiconductor devices losses and of resonant devices parameters uncertainty is discussed. The model is validated through PSIM simulations of a 3.7kW/85kHz WPT system.