基于高斯混合模型的自适应背景更新

Feng Wang, S. Dai
{"title":"基于高斯混合模型的自适应背景更新","authors":"Feng Wang, S. Dai","doi":"10.1109/ICINFA.2009.5204945","DOIUrl":null,"url":null,"abstract":"In computer vision system, detection of moving targets has interference in subsequent processes including classification, tracking and recognition. Background subtraction method is commonly used in image segmentation for moving region of video. This paper puts emphasis on background model update based on mixture models of Gaussian in complicated situation, and implements an adaptive learning method to update background models. Each pixel is classified into 4 different types: still background, dynamic background, moving object, temporary still object. And the proposed method reduces the computational complexity.","PeriodicalId":223425,"journal":{"name":"2009 International Conference on Information and Automation","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive background update based on mixture models of Gaussian\",\"authors\":\"Feng Wang, S. Dai\",\"doi\":\"10.1109/ICINFA.2009.5204945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer vision system, detection of moving targets has interference in subsequent processes including classification, tracking and recognition. Background subtraction method is commonly used in image segmentation for moving region of video. This paper puts emphasis on background model update based on mixture models of Gaussian in complicated situation, and implements an adaptive learning method to update background models. Each pixel is classified into 4 different types: still background, dynamic background, moving object, temporary still object. And the proposed method reduces the computational complexity.\",\"PeriodicalId\":223425,\"journal\":{\"name\":\"2009 International Conference on Information and Automation\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2009.5204945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2009.5204945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在计算机视觉系统中,运动目标的检测会干扰后续的分类、跟踪和识别过程。背景减法是对视频中运动区域进行分割的常用方法。本文重点研究了复杂情况下基于高斯混合模型的背景模型更新,实现了一种自适应学习方法来更新背景模型。每个像素被分为4种不同的类型:静止背景、动态背景、运动对象、临时静止对象。该方法降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive background update based on mixture models of Gaussian
In computer vision system, detection of moving targets has interference in subsequent processes including classification, tracking and recognition. Background subtraction method is commonly used in image segmentation for moving region of video. This paper puts emphasis on background model update based on mixture models of Gaussian in complicated situation, and implements an adaptive learning method to update background models. Each pixel is classified into 4 different types: still background, dynamic background, moving object, temporary still object. And the proposed method reduces the computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信