利用拉伸应力氮化硅封盖层增强MoS2单层晶体管的迁移率

Marc Jaikissoon, Jerry A. Yang, Kathryn M. Neilson, E. Pop, K. Saraswat
{"title":"利用拉伸应力氮化硅封盖层增强MoS2单层晶体管的迁移率","authors":"Marc Jaikissoon, Jerry A. Yang, Kathryn M. Neilson, E. Pop, K. Saraswat","doi":"10.1109/DRC55272.2022.9855790","DOIUrl":null,"url":null,"abstract":"Strain engineering has played an important role in modern transistor technology, improving mobility in Si devices since the 90 nm node. Tensile silicon nitride (SiNx) capping layers for Si NMOS have been an effective way to enhance mobility by modifying the Si band structure [1]. 2D semiconductors such as mono-layer (IL) MoS2 are also predicted to have improved mobility under tensile strain, by reduction of intervalley scattering and effective mass [2]. However, CMOS-compatible strain techniques have yet to be demonstrated for such 2D semiconductors. Here, we demonstrate improvement in the mobility and on-state current of 1L MoS2 transistors using a high-tensile-stress SiNx capping layer. We achieve up to 47% improvement in back-gated FET (BG-FET) mobility and on-state current, then extend the technique to achieve 33% improved current drive in top-gated FETs (TG-FET), with record saturation current up to 488 µA/µm in a 200 nm long channel.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mobility Enhancement of Monolayer MoS2 Transistors using Tensile-Stressed Silicon Nitride Capping Layers\",\"authors\":\"Marc Jaikissoon, Jerry A. Yang, Kathryn M. Neilson, E. Pop, K. Saraswat\",\"doi\":\"10.1109/DRC55272.2022.9855790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strain engineering has played an important role in modern transistor technology, improving mobility in Si devices since the 90 nm node. Tensile silicon nitride (SiNx) capping layers for Si NMOS have been an effective way to enhance mobility by modifying the Si band structure [1]. 2D semiconductors such as mono-layer (IL) MoS2 are also predicted to have improved mobility under tensile strain, by reduction of intervalley scattering and effective mass [2]. However, CMOS-compatible strain techniques have yet to be demonstrated for such 2D semiconductors. Here, we demonstrate improvement in the mobility and on-state current of 1L MoS2 transistors using a high-tensile-stress SiNx capping layer. We achieve up to 47% improvement in back-gated FET (BG-FET) mobility and on-state current, then extend the technique to achieve 33% improved current drive in top-gated FETs (TG-FET), with record saturation current up to 488 µA/µm in a 200 nm long channel.\",\"PeriodicalId\":200504,\"journal\":{\"name\":\"2022 Device Research Conference (DRC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC55272.2022.9855790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC55272.2022.9855790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

应变工程在现代晶体管技术中起着重要的作用,从90nm节点开始就提高了硅器件的迁移率。用于Si NMOS的拉伸氮化硅(SiNx)封盖层是通过改变Si能带结构来提高迁移率的有效方法[1]。二维半导体,如单层(IL) MoS2,也被预测在拉伸应变下,通过减少谷间散射和有效质量,具有更好的迁移率[2]。然而,cmos兼容的应变技术还没有被用于这种二维半导体。在这里,我们展示了使用高拉伸应力SiNx封盖层改善1L MoS2晶体管的迁移率和导通状态电流。我们将背门效应管(BG-FET)的迁移率和导通电流提高了47%,然后扩展该技术,使顶门效应管(TG-FET)的电流驱动提高了33%,在200 nm长的通道中,饱和电流高达488µA/µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobility Enhancement of Monolayer MoS2 Transistors using Tensile-Stressed Silicon Nitride Capping Layers
Strain engineering has played an important role in modern transistor technology, improving mobility in Si devices since the 90 nm node. Tensile silicon nitride (SiNx) capping layers for Si NMOS have been an effective way to enhance mobility by modifying the Si band structure [1]. 2D semiconductors such as mono-layer (IL) MoS2 are also predicted to have improved mobility under tensile strain, by reduction of intervalley scattering and effective mass [2]. However, CMOS-compatible strain techniques have yet to be demonstrated for such 2D semiconductors. Here, we demonstrate improvement in the mobility and on-state current of 1L MoS2 transistors using a high-tensile-stress SiNx capping layer. We achieve up to 47% improvement in back-gated FET (BG-FET) mobility and on-state current, then extend the technique to achieve 33% improved current drive in top-gated FETs (TG-FET), with record saturation current up to 488 µA/µm in a 200 nm long channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信