Zhongjie Qian, Tianyi Li, Vigneshwar Sakthivelpathi, Sheila M. Goodman, Anthony B. Dichiara, A. Mamishev, J. Chung
{"title":"基于碳纳米管-纸复合材料弹性特性的电容式传感器湿度响应","authors":"Zhongjie Qian, Tianyi Li, Vigneshwar Sakthivelpathi, Sheila M. Goodman, Anthony B. Dichiara, A. Mamishev, J. Chung","doi":"10.1088/2632-959X/ac6764","DOIUrl":null,"url":null,"abstract":"Auxetic materials showing a negative Poisson’s ratio can offer unusual sensing capabilities due to drastic percolation changes. This study presents the capacitive response of wet-fractured carbon nanotube paper composites in exposure to humidity. A strained composite strip is fractured to produce numerous cantilevers consisting of cellulose fibers coated with carbon nanotubes. During stretching, the thin composite buckles in the out-of-plane direction, which causes auxetic behavior to generate the radially structured electrodes. The crossbar junctions forming among the fractured electrodes significantly increase capacitance and its response to humidity as a function of sensor widths. The molecular junctions switch electric characteristics between predominantly resistive- and capacitive elements. The resulting capacitive response is characterized for humidity sensing without the need for an additional absorption medium. The normalized capacitance change (ΔC/C0) exhibits a sensitivity of 0.225 within the range of 40 ∼ 80% relative humidity. The novel auxetic behavior of a water-printed paper-based nanocomposite paves the way for inexpensive humidity and sweat sensors.","PeriodicalId":118165,"journal":{"name":"Nano Express","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Humidity response of a capacitive sensor based on auxeticity of carbon nanotube-paper composites\",\"authors\":\"Zhongjie Qian, Tianyi Li, Vigneshwar Sakthivelpathi, Sheila M. Goodman, Anthony B. Dichiara, A. Mamishev, J. Chung\",\"doi\":\"10.1088/2632-959X/ac6764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auxetic materials showing a negative Poisson’s ratio can offer unusual sensing capabilities due to drastic percolation changes. This study presents the capacitive response of wet-fractured carbon nanotube paper composites in exposure to humidity. A strained composite strip is fractured to produce numerous cantilevers consisting of cellulose fibers coated with carbon nanotubes. During stretching, the thin composite buckles in the out-of-plane direction, which causes auxetic behavior to generate the radially structured electrodes. The crossbar junctions forming among the fractured electrodes significantly increase capacitance and its response to humidity as a function of sensor widths. The molecular junctions switch electric characteristics between predominantly resistive- and capacitive elements. The resulting capacitive response is characterized for humidity sensing without the need for an additional absorption medium. The normalized capacitance change (ΔC/C0) exhibits a sensitivity of 0.225 within the range of 40 ∼ 80% relative humidity. The novel auxetic behavior of a water-printed paper-based nanocomposite paves the way for inexpensive humidity and sweat sensors.\",\"PeriodicalId\":118165,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959X/ac6764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959X/ac6764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Humidity response of a capacitive sensor based on auxeticity of carbon nanotube-paper composites
Auxetic materials showing a negative Poisson’s ratio can offer unusual sensing capabilities due to drastic percolation changes. This study presents the capacitive response of wet-fractured carbon nanotube paper composites in exposure to humidity. A strained composite strip is fractured to produce numerous cantilevers consisting of cellulose fibers coated with carbon nanotubes. During stretching, the thin composite buckles in the out-of-plane direction, which causes auxetic behavior to generate the radially structured electrodes. The crossbar junctions forming among the fractured electrodes significantly increase capacitance and its response to humidity as a function of sensor widths. The molecular junctions switch electric characteristics between predominantly resistive- and capacitive elements. The resulting capacitive response is characterized for humidity sensing without the need for an additional absorption medium. The normalized capacitance change (ΔC/C0) exhibits a sensitivity of 0.225 within the range of 40 ∼ 80% relative humidity. The novel auxetic behavior of a water-printed paper-based nanocomposite paves the way for inexpensive humidity and sweat sensors.