Mariusz Butkiewicz, Ralf Mueller, Danilo Selic, E. Dawson, J. Meiler
{"title":"机器学习方法在定量结构活动关系中的应用","authors":"Mariusz Butkiewicz, Ralf Mueller, Danilo Selic, E. Dawson, J. Meiler","doi":"10.1109/CIBCB.2009.4925736","DOIUrl":null,"url":null,"abstract":"Machine Learning techniques are successfully applied to establish quantitative relations between chemical structure and biological activity (QSAR), i.e. classify compounds as active or inactive with respect to a specific target biological system. This paper presents a comparison of Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel treatments against schizophrenia. When training and testing each of the three techniques on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, respectively. For the top percentile of predicted active compounds, the true positives for all three methods were highly similar, while the inactives were diverse offering the potential use of jury approaches to improve prediction accuracy.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Application of machine learning approaches on quantitative structure activity relationships\",\"authors\":\"Mariusz Butkiewicz, Ralf Mueller, Danilo Selic, E. Dawson, J. Meiler\",\"doi\":\"10.1109/CIBCB.2009.4925736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning techniques are successfully applied to establish quantitative relations between chemical structure and biological activity (QSAR), i.e. classify compounds as active or inactive with respect to a specific target biological system. This paper presents a comparison of Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel treatments against schizophrenia. When training and testing each of the three techniques on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, respectively. For the top percentile of predicted active compounds, the true positives for all three methods were highly similar, while the inactives were diverse offering the potential use of jury approaches to improve prediction accuracy.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of machine learning approaches on quantitative structure activity relationships
Machine Learning techniques are successfully applied to establish quantitative relations between chemical structure and biological activity (QSAR), i.e. classify compounds as active or inactive with respect to a specific target biological system. This paper presents a comparison of Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel treatments against schizophrenia. When training and testing each of the three techniques on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, respectively. For the top percentile of predicted active compounds, the true positives for all three methods were highly similar, while the inactives were diverse offering the potential use of jury approaches to improve prediction accuracy.