机器学习方法在定量结构活动关系中的应用

Mariusz Butkiewicz, Ralf Mueller, Danilo Selic, E. Dawson, J. Meiler
{"title":"机器学习方法在定量结构活动关系中的应用","authors":"Mariusz Butkiewicz, Ralf Mueller, Danilo Selic, E. Dawson, J. Meiler","doi":"10.1109/CIBCB.2009.4925736","DOIUrl":null,"url":null,"abstract":"Machine Learning techniques are successfully applied to establish quantitative relations between chemical structure and biological activity (QSAR), i.e. classify compounds as active or inactive with respect to a specific target biological system. This paper presents a comparison of Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel treatments against schizophrenia. When training and testing each of the three techniques on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, respectively. For the top percentile of predicted active compounds, the true positives for all three methods were highly similar, while the inactives were diverse offering the potential use of jury approaches to improve prediction accuracy.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Application of machine learning approaches on quantitative structure activity relationships\",\"authors\":\"Mariusz Butkiewicz, Ralf Mueller, Danilo Selic, E. Dawson, J. Meiler\",\"doi\":\"10.1109/CIBCB.2009.4925736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning techniques are successfully applied to establish quantitative relations between chemical structure and biological activity (QSAR), i.e. classify compounds as active or inactive with respect to a specific target biological system. This paper presents a comparison of Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel treatments against schizophrenia. When training and testing each of the three techniques on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, respectively. For the top percentile of predicted active compounds, the true positives for all three methods were highly similar, while the inactives were diverse offering the potential use of jury approaches to improve prediction accuracy.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

机器学习技术成功地应用于建立化学结构和生物活性(QSAR)之间的定量关系,即根据特定的目标生物系统将化合物分类为活性或非活性。本文介绍了人工神经网络(ANN),支持向量机(SVM)和决策树(DT)的比较,以识别代谢性谷氨酸受体5 (mGluR5)的增强剂,这些化合物有可能成为治疗精神分裂症的新方法。当在相同的数据集上训练和测试这三种技术时,分别获得了61、64和43的丰富度,并且ann、svm和dt的曲线下面积(AUC)分别为0.77、0.78和0.63。对于预测活性化合物的前百分位数,三种方法的真阳性结果高度相似,而非活性成分则不同,这为使用陪审团方法提高预测准确性提供了潜在的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of machine learning approaches on quantitative structure activity relationships
Machine Learning techniques are successfully applied to establish quantitative relations between chemical structure and biological activity (QSAR), i.e. classify compounds as active or inactive with respect to a specific target biological system. This paper presents a comparison of Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel treatments against schizophrenia. When training and testing each of the three techniques on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, respectively. For the top percentile of predicted active compounds, the true positives for all three methods were highly similar, while the inactives were diverse offering the potential use of jury approaches to improve prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信