{"title":"埃塞俄比亚基于微电网的农村电气化可再生能源设计与仿真","authors":"Abiy Mokennen Weldegiyorgis, Ravikumar Hiremath, Derje Shiferaw","doi":"10.11648/J.EPES.20211004.11","DOIUrl":null,"url":null,"abstract":"Ethiopia is a developing country where the majority of the community lives in rural areas without electricity from the grid because of unfavorable condition of the remote area. It is necessary to supply the energy needs of this rural population for better advantages; by integrates multiply stand-alone renewable energy sources. Further, the power management of these renewably energy systems is a vital. On this research we deals with modeling & simulation of photovoltaic, micro-hydro and, storage based power generation system in MATLAB/Simulink. The power generated from these combined three renewable energy sources through intelligent decision serves for selected kebele loads. This kebele (selected village) has 5.46KWhr/m2/day amount yearly average solar radiation and 12.241l/s average flow rate. 64KW primary peak load was considered for 180 model households. The optimization result of HOMER 10KW PV, 50.4KW micro-hydro, and 18KW fuel cell optimal design is developed for electrifying the study area, for the investment cost, total present cost and unit cost of $160,780, $269,054 $0.059 respectively. Then to use the three energy resources efficiently, fuzzy logic controller based intelligent decision was used for monitoring the type and amount of resources available, as per the demand and available sources.","PeriodicalId":125088,"journal":{"name":"American Journal of Electrical Power and Energy Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Simulation of Renewable Energy Resources for Micro Grid Based Rural Electrification in Ethiopia\",\"authors\":\"Abiy Mokennen Weldegiyorgis, Ravikumar Hiremath, Derje Shiferaw\",\"doi\":\"10.11648/J.EPES.20211004.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethiopia is a developing country where the majority of the community lives in rural areas without electricity from the grid because of unfavorable condition of the remote area. It is necessary to supply the energy needs of this rural population for better advantages; by integrates multiply stand-alone renewable energy sources. Further, the power management of these renewably energy systems is a vital. On this research we deals with modeling & simulation of photovoltaic, micro-hydro and, storage based power generation system in MATLAB/Simulink. The power generated from these combined three renewable energy sources through intelligent decision serves for selected kebele loads. This kebele (selected village) has 5.46KWhr/m2/day amount yearly average solar radiation and 12.241l/s average flow rate. 64KW primary peak load was considered for 180 model households. The optimization result of HOMER 10KW PV, 50.4KW micro-hydro, and 18KW fuel cell optimal design is developed for electrifying the study area, for the investment cost, total present cost and unit cost of $160,780, $269,054 $0.059 respectively. Then to use the three energy resources efficiently, fuzzy logic controller based intelligent decision was used for monitoring the type and amount of resources available, as per the demand and available sources.\",\"PeriodicalId\":125088,\"journal\":{\"name\":\"American Journal of Electrical Power and Energy Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Electrical Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EPES.20211004.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electrical Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EPES.20211004.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Simulation of Renewable Energy Resources for Micro Grid Based Rural Electrification in Ethiopia
Ethiopia is a developing country where the majority of the community lives in rural areas without electricity from the grid because of unfavorable condition of the remote area. It is necessary to supply the energy needs of this rural population for better advantages; by integrates multiply stand-alone renewable energy sources. Further, the power management of these renewably energy systems is a vital. On this research we deals with modeling & simulation of photovoltaic, micro-hydro and, storage based power generation system in MATLAB/Simulink. The power generated from these combined three renewable energy sources through intelligent decision serves for selected kebele loads. This kebele (selected village) has 5.46KWhr/m2/day amount yearly average solar radiation and 12.241l/s average flow rate. 64KW primary peak load was considered for 180 model households. The optimization result of HOMER 10KW PV, 50.4KW micro-hydro, and 18KW fuel cell optimal design is developed for electrifying the study area, for the investment cost, total present cost and unit cost of $160,780, $269,054 $0.059 respectively. Then to use the three energy resources efficiently, fuzzy logic controller based intelligent decision was used for monitoring the type and amount of resources available, as per the demand and available sources.