基于fpga的存储引擎加速MongoDB的查询:正在进行中

Jinyu Zhan, Junting Wu, Wei Jiang, Ying Li, Jianping Zhu
{"title":"基于fpga的存储引擎加速MongoDB的查询:正在进行中","authors":"Jinyu Zhan, Junting Wu, Wei Jiang, Ying Li, Jianping Zhu","doi":"10.1109/CODESISSS51650.2020.9244028","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a storage engine for MongoDB to accelerate the queries and reduce the memory usage. An FPGA-based query accelerator is deployed to speed up the queries while hot data is migrated from memory to SSD to reduce memory occupancy by our storage engine. Moreover, multiple query tasks of MongoDB are performed in parallel and query conditions are parameterized to support diversified queries. Based on TPC- H benchmark and Tencent data set, experimental results demonstrate that our storage engine can achieve higher query efficiency (saving up to 63.5 % time overhead) and lower memory occupancy (reducing up to 73.4 % memory usage) compared with traditional MongoDB.","PeriodicalId":437802,"journal":{"name":"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Queries of MongoDB by an FPGA-based Storage Engine: Work-in-Progress\",\"authors\":\"Jinyu Zhan, Junting Wu, Wei Jiang, Ying Li, Jianping Zhu\",\"doi\":\"10.1109/CODESISSS51650.2020.9244028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a storage engine for MongoDB to accelerate the queries and reduce the memory usage. An FPGA-based query accelerator is deployed to speed up the queries while hot data is migrated from memory to SSD to reduce memory occupancy by our storage engine. Moreover, multiple query tasks of MongoDB are performed in parallel and query conditions are parameterized to support diversified queries. Based on TPC- H benchmark and Tencent data set, experimental results demonstrate that our storage engine can achieve higher query efficiency (saving up to 63.5 % time overhead) and lower memory occupancy (reducing up to 73.4 % memory usage) compared with traditional MongoDB.\",\"PeriodicalId\":437802,\"journal\":{\"name\":\"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODESISSS51650.2020.9244028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODESISSS51650.2020.9244028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为MongoDB提出了一个存储引擎来加速查询并减少内存的使用。当热数据从内存迁移到SSD时,部署了基于fpga的查询加速器来加快查询速度,以减少存储引擎对内存的占用。MongoDB的多个查询任务并行执行,查询条件参数化,支持多样化查询。基于TPC- H基准测试和腾讯数据集的实验结果表明,与传统MongoDB相比,我们的存储引擎可以实现更高的查询效率(节省高达63.5%的时间开销)和更低的内存占用(减少高达73.4%的内存使用)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Queries of MongoDB by an FPGA-based Storage Engine: Work-in-Progress
In this paper, we propose a storage engine for MongoDB to accelerate the queries and reduce the memory usage. An FPGA-based query accelerator is deployed to speed up the queries while hot data is migrated from memory to SSD to reduce memory occupancy by our storage engine. Moreover, multiple query tasks of MongoDB are performed in parallel and query conditions are parameterized to support diversified queries. Based on TPC- H benchmark and Tencent data set, experimental results demonstrate that our storage engine can achieve higher query efficiency (saving up to 63.5 % time overhead) and lower memory occupancy (reducing up to 73.4 % memory usage) compared with traditional MongoDB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信