{"title":"用于时间平均振动测量的剪切和全息增强分辨率方法","authors":"D. Borza","doi":"10.1117/12.814697","DOIUrl":null,"url":null,"abstract":"Vibration measurement by time-average methods of different full-field techniques like speckle interferometry, digital holography or analog, optical holography is a powerful technique, able to provide vibration amplitude maps of high spatial resolution. The essential characteristic of full-field techniques is the simultaneous acquisition of data for all object points. Quantitative data processing aiming to obtain the full-field amplitude map is affected by several difficulties. The most important are the weak contrast of Bessel-type fringes and the speckle noise. The greatest obstacle in achieving complete amplitude field estimation comes from the orthogonal components of time-averaged interferograms, where the multiplicative, high-frequency phase noise covers the deterministic, vibration-related phase. Several researchers studied these problems in relation with the double-exposure method. In the present paper, the author presents in a single, unifying approach, these methods, common to all full-field interferometric techniques. An important reduction of multiplicative high-frequency phase noise allows obtaining fringe-averaged patterns whose intensity noise is much lower than in classical methods. The analysis leads to lower noise of the fringe patterns and extended measurement range, and also to a method of vibration-related phase estimation based on the mathematical inversion of the Bessel function, which may include in some stages subpixel precision.","PeriodicalId":191475,"journal":{"name":"International Symposium on Laser Metrology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced resolution methods in shearography and holography for time-average vibration measurement\",\"authors\":\"D. Borza\",\"doi\":\"10.1117/12.814697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration measurement by time-average methods of different full-field techniques like speckle interferometry, digital holography or analog, optical holography is a powerful technique, able to provide vibration amplitude maps of high spatial resolution. The essential characteristic of full-field techniques is the simultaneous acquisition of data for all object points. Quantitative data processing aiming to obtain the full-field amplitude map is affected by several difficulties. The most important are the weak contrast of Bessel-type fringes and the speckle noise. The greatest obstacle in achieving complete amplitude field estimation comes from the orthogonal components of time-averaged interferograms, where the multiplicative, high-frequency phase noise covers the deterministic, vibration-related phase. Several researchers studied these problems in relation with the double-exposure method. In the present paper, the author presents in a single, unifying approach, these methods, common to all full-field interferometric techniques. An important reduction of multiplicative high-frequency phase noise allows obtaining fringe-averaged patterns whose intensity noise is much lower than in classical methods. The analysis leads to lower noise of the fringe patterns and extended measurement range, and also to a method of vibration-related phase estimation based on the mathematical inversion of the Bessel function, which may include in some stages subpixel precision.\",\"PeriodicalId\":191475,\"journal\":{\"name\":\"International Symposium on Laser Metrology\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Laser Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.814697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Laser Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.814697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced resolution methods in shearography and holography for time-average vibration measurement
Vibration measurement by time-average methods of different full-field techniques like speckle interferometry, digital holography or analog, optical holography is a powerful technique, able to provide vibration amplitude maps of high spatial resolution. The essential characteristic of full-field techniques is the simultaneous acquisition of data for all object points. Quantitative data processing aiming to obtain the full-field amplitude map is affected by several difficulties. The most important are the weak contrast of Bessel-type fringes and the speckle noise. The greatest obstacle in achieving complete amplitude field estimation comes from the orthogonal components of time-averaged interferograms, where the multiplicative, high-frequency phase noise covers the deterministic, vibration-related phase. Several researchers studied these problems in relation with the double-exposure method. In the present paper, the author presents in a single, unifying approach, these methods, common to all full-field interferometric techniques. An important reduction of multiplicative high-frequency phase noise allows obtaining fringe-averaged patterns whose intensity noise is much lower than in classical methods. The analysis leads to lower noise of the fringe patterns and extended measurement range, and also to a method of vibration-related phase estimation based on the mathematical inversion of the Bessel function, which may include in some stages subpixel precision.