{"title":"一种用于微纳颗粒分离的多功能立式微筛","authors":"C. Shen, H. Pham, P. Sarro","doi":"10.1109/MEMSYS.2009.4805399","DOIUrl":null,"url":null,"abstract":"This paper presents the design, fabrication and characterization of a new concept of microsieves with vertical nano-perforated walls. A new approach is applied to realize these walls accurately without sophisticated or non-conventional lithography while preserving IC-compatibility. By simply changing the deposition and etch time in the fabrication process, different pore size microsieves are fabricated. Further, by combining several walls with specific design modifications, a range of functionalities (filtration, separation, anti-choking, etc) can be integrated on one chip. Microsieves with 100 nm and 1¿m pore size are fabricated. Separation and antichoking functionalities are successfully demonstrated.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multifunctional Vertical Microsieve for Micro and Nano Particles Separation\",\"authors\":\"C. Shen, H. Pham, P. Sarro\",\"doi\":\"10.1109/MEMSYS.2009.4805399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, fabrication and characterization of a new concept of microsieves with vertical nano-perforated walls. A new approach is applied to realize these walls accurately without sophisticated or non-conventional lithography while preserving IC-compatibility. By simply changing the deposition and etch time in the fabrication process, different pore size microsieves are fabricated. Further, by combining several walls with specific design modifications, a range of functionalities (filtration, separation, anti-choking, etc) can be integrated on one chip. Microsieves with 100 nm and 1¿m pore size are fabricated. Separation and antichoking functionalities are successfully demonstrated.\",\"PeriodicalId\":187850,\"journal\":{\"name\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2009.4805399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multifunctional Vertical Microsieve for Micro and Nano Particles Separation
This paper presents the design, fabrication and characterization of a new concept of microsieves with vertical nano-perforated walls. A new approach is applied to realize these walls accurately without sophisticated or non-conventional lithography while preserving IC-compatibility. By simply changing the deposition and etch time in the fabrication process, different pore size microsieves are fabricated. Further, by combining several walls with specific design modifications, a range of functionalities (filtration, separation, anti-choking, etc) can be integrated on one chip. Microsieves with 100 nm and 1¿m pore size are fabricated. Separation and antichoking functionalities are successfully demonstrated.