可穿戴机器人超越语义的极化预测

Kailun Yang, L. Bergasa, Eduardo Romera, Xiao Huang, Kaiwei Wang
{"title":"可穿戴机器人超越语义的极化预测","authors":"Kailun Yang, L. Bergasa, Eduardo Romera, Xiao Huang, Kaiwei Wang","doi":"10.1109/HUMANOIDS.2018.8625005","DOIUrl":null,"url":null,"abstract":"Semantic perception is a key enabler in robotics, which supposes a very resourceful and efficient manner of applying vision information for upper-level navigation and manipulation tasks. Given the challenges on specular semantics such as water hazards, transparent glasses and metallic surfaces, polarization imaging has been explored to complement the RGB-based pixel-wise semantic segmentation because it reflects surface characteristics and provides additional attributes. However, polarimetric measurements generally entail prohibitively expensive cameras and highly accurate calibrations. Inspired by the representation power of Convolutional Neural Networks (CNNs), we propose to predict polarization information from monocular RGB images, precisely per-pixel polarization difference. The core of our approach is a cluster of efficient deep architectures building on factorized convolutions, hierarchical dilations and pyramid representations, aimed to produce both semantic and polarimetric estimations in real time. Comprehensive experiments demonstrate the qualified accuracy on a wearable exoskeleton humanoid robot.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Predicting Polarization Beyond Semantics for Wearable Robotics\",\"authors\":\"Kailun Yang, L. Bergasa, Eduardo Romera, Xiao Huang, Kaiwei Wang\",\"doi\":\"10.1109/HUMANOIDS.2018.8625005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic perception is a key enabler in robotics, which supposes a very resourceful and efficient manner of applying vision information for upper-level navigation and manipulation tasks. Given the challenges on specular semantics such as water hazards, transparent glasses and metallic surfaces, polarization imaging has been explored to complement the RGB-based pixel-wise semantic segmentation because it reflects surface characteristics and provides additional attributes. However, polarimetric measurements generally entail prohibitively expensive cameras and highly accurate calibrations. Inspired by the representation power of Convolutional Neural Networks (CNNs), we propose to predict polarization information from monocular RGB images, precisely per-pixel polarization difference. The core of our approach is a cluster of efficient deep architectures building on factorized convolutions, hierarchical dilations and pyramid representations, aimed to produce both semantic and polarimetric estimations in real time. Comprehensive experiments demonstrate the qualified accuracy on a wearable exoskeleton humanoid robot.\",\"PeriodicalId\":433345,\"journal\":{\"name\":\"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2018.8625005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8625005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

语义感知是机器人技术的关键,它要求以一种非常灵活和有效的方式将视觉信息应用于高级导航和操作任务。考虑到镜面语义的挑战,如水危害、透明玻璃和金属表面,偏振成像已经被探索用于补充基于rgb的像素语义分割,因为它反映了表面特征并提供了额外的属性。然而,偏振测量通常需要昂贵的相机和高度精确的校准。受卷积神经网络(cnn)表征能力的启发,我们提出了从单眼RGB图像中精确预测偏振信息的方法,即逐像素偏振差。我们方法的核心是建立在因式卷积、分层扩张和金字塔表示基础上的高效深度架构集群,旨在实时生成语义和极化估计。综合实验证明了该方法在可穿戴外骨骼类人机器人上具有良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Polarization Beyond Semantics for Wearable Robotics
Semantic perception is a key enabler in robotics, which supposes a very resourceful and efficient manner of applying vision information for upper-level navigation and manipulation tasks. Given the challenges on specular semantics such as water hazards, transparent glasses and metallic surfaces, polarization imaging has been explored to complement the RGB-based pixel-wise semantic segmentation because it reflects surface characteristics and provides additional attributes. However, polarimetric measurements generally entail prohibitively expensive cameras and highly accurate calibrations. Inspired by the representation power of Convolutional Neural Networks (CNNs), we propose to predict polarization information from monocular RGB images, precisely per-pixel polarization difference. The core of our approach is a cluster of efficient deep architectures building on factorized convolutions, hierarchical dilations and pyramid representations, aimed to produce both semantic and polarimetric estimations in real time. Comprehensive experiments demonstrate the qualified accuracy on a wearable exoskeleton humanoid robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信