云计算中MapReduce调度研究综述

Li Liu, Yingqi Zhai
{"title":"云计算中MapReduce调度研究综述","authors":"Li Liu, Yingqi Zhai","doi":"10.1109/IMCCC.2015.363","DOIUrl":null,"url":null,"abstract":"A large-scale data processing is increasingly leveraging Map Reduce frameworks on Cloud computing platform. We aimed to study various job schedulers improved in Map Reduce, and identify research directions in this area. In this paper, the related techniques of Map Reduce and Hodoop are described briefly. Then a variety of Map Reduce schedulers are reviewed and classified, also the features of these schedulers are expressed.","PeriodicalId":438549,"journal":{"name":"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on MapReduce Scheduling in Cloud Computing\",\"authors\":\"Li Liu, Yingqi Zhai\",\"doi\":\"10.1109/IMCCC.2015.363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large-scale data processing is increasingly leveraging Map Reduce frameworks on Cloud computing platform. We aimed to study various job schedulers improved in Map Reduce, and identify research directions in this area. In this paper, the related techniques of Map Reduce and Hodoop are described briefly. Then a variety of Map Reduce schedulers are reviewed and classified, also the features of these schedulers are expressed.\",\"PeriodicalId\":438549,\"journal\":{\"name\":\"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCCC.2015.363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2015.363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模的数据处理越来越多地利用云计算平台上的Map Reduce框架。我们旨在研究Map Reduce中改进的各种job scheduler,并确定该领域的研究方向。本文简要介绍了Map Reduce和hadoop的相关技术。然后对各种Map Reduce调度器进行了回顾和分类,并对这些调度器的特点进行了阐述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on MapReduce Scheduling in Cloud Computing
A large-scale data processing is increasingly leveraging Map Reduce frameworks on Cloud computing platform. We aimed to study various job schedulers improved in Map Reduce, and identify research directions in this area. In this paper, the related techniques of Map Reduce and Hodoop are described briefly. Then a variety of Map Reduce schedulers are reviewed and classified, also the features of these schedulers are expressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信