一种基于深度自编码器的入侵检测系统

F. Farahnakian, J. Heikkonen
{"title":"一种基于深度自编码器的入侵检测系统","authors":"F. Farahnakian, J. Heikkonen","doi":"10.23919/ICACT.2018.8323687","DOIUrl":null,"url":null,"abstract":"One of the most challenging problems facing network operators today is network attacks identification due to extensive number of vulnerabilities in computer systems and creativity of attackers. To address this problem, we present a deep learning approach for intrusion detection systems. Our approach uses Deep Auto-Encoder (DAE) as one of the most well-known deep learning models. The proposed DAE model is trained in a greedy layer-wise fashion in order to avoid overfitting and local optima. The experimental results on the KDD-CUP'99 dataset show that our approach provides substantial improvement over other deep learning-based approaches in terms of accuracy, detection rate and false alarm rate.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":"{\"title\":\"A deep auto-encoder based approach for intrusion detection system\",\"authors\":\"F. Farahnakian, J. Heikkonen\",\"doi\":\"10.23919/ICACT.2018.8323687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most challenging problems facing network operators today is network attacks identification due to extensive number of vulnerabilities in computer systems and creativity of attackers. To address this problem, we present a deep learning approach for intrusion detection systems. Our approach uses Deep Auto-Encoder (DAE) as one of the most well-known deep learning models. The proposed DAE model is trained in a greedy layer-wise fashion in order to avoid overfitting and local optima. The experimental results on the KDD-CUP'99 dataset show that our approach provides substantial improvement over other deep learning-based approaches in terms of accuracy, detection rate and false alarm rate.\",\"PeriodicalId\":228625,\"journal\":{\"name\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"167\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT.2018.8323687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 167

摘要

由于计算机系统中大量的漏洞和攻击者的创造性,网络攻击识别是当今网络运营商面临的最具挑战性的问题之一。为了解决这个问题,我们提出了一种用于入侵检测系统的深度学习方法。我们的方法使用深度自动编码器(Deep Auto-Encoder, DAE)作为最著名的深度学习模型之一。为了避免过度拟合和局部最优,所提出的DAE模型以贪婪分层的方式进行训练。在KDD-CUP'99数据集上的实验结果表明,我们的方法在准确率、检测率和虚警率方面都比其他基于深度学习的方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep auto-encoder based approach for intrusion detection system
One of the most challenging problems facing network operators today is network attacks identification due to extensive number of vulnerabilities in computer systems and creativity of attackers. To address this problem, we present a deep learning approach for intrusion detection systems. Our approach uses Deep Auto-Encoder (DAE) as one of the most well-known deep learning models. The proposed DAE model is trained in a greedy layer-wise fashion in order to avoid overfitting and local optima. The experimental results on the KDD-CUP'99 dataset show that our approach provides substantial improvement over other deep learning-based approaches in terms of accuracy, detection rate and false alarm rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信