{"title":"PCR扩增后在微芯片上的DNA熔化分析","authors":"M. Slyadnev, K. Sato, M. Tokeshi, T. Kitamori","doi":"10.1109/IMNC.2001.984156","DOIUrl":null,"url":null,"abstract":"DNA melting analysis requires precise temperature measurement. Since heat capacity of the sample inside microchip is extremely small, a measurement device can affect temperature response. In this paper we report a method of temperature monitoring that was implemented on a chip to overcome this difficulties.","PeriodicalId":202620,"journal":{"name":"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA melting analysis on a microchip after PCR amplification\",\"authors\":\"M. Slyadnev, K. Sato, M. Tokeshi, T. Kitamori\",\"doi\":\"10.1109/IMNC.2001.984156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA melting analysis requires precise temperature measurement. Since heat capacity of the sample inside microchip is extremely small, a measurement device can affect temperature response. In this paper we report a method of temperature monitoring that was implemented on a chip to overcome this difficulties.\",\"PeriodicalId\":202620,\"journal\":{\"name\":\"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMNC.2001.984156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMNC.2001.984156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNA melting analysis on a microchip after PCR amplification
DNA melting analysis requires precise temperature measurement. Since heat capacity of the sample inside microchip is extremely small, a measurement device can affect temperature response. In this paper we report a method of temperature monitoring that was implemented on a chip to overcome this difficulties.