捕获工业过程中连通性和因果关系的传递熵估计

Micael Souza, Milena M. Arruda, F. Assis, Luciana Veloso
{"title":"捕获工业过程中连通性和因果关系的传递熵估计","authors":"Micael Souza, Milena M. Arruda, F. Assis, Luciana Veloso","doi":"10.14209/sbrt.2019.1570557119","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of two information theory measures: transfer entropy and direct transfer entropy, as an approach for detection of causality and connectivity between continuous variables in industrial processes (continuous systems). These measures are asymmetric and identify and quantify linear or non-linear directional relationships between two variables. To estimate these measures, we used estimators based on distances between neighbors. The results obtained from simulations demonstrate the applicability of the measurements and their estimations in order to identify the connectivity map of two systems: autoregressive model (which can be compared with the analytical results) and four water tanks (an industrial systems). Keywords— Transfer entropy, causality, continuous processes, industrial processes.","PeriodicalId":135552,"journal":{"name":"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Transfer Entropy for Capturing Connectivity and Causality in Industrial Processes\",\"authors\":\"Micael Souza, Milena M. Arruda, F. Assis, Luciana Veloso\",\"doi\":\"10.14209/sbrt.2019.1570557119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the use of two information theory measures: transfer entropy and direct transfer entropy, as an approach for detection of causality and connectivity between continuous variables in industrial processes (continuous systems). These measures are asymmetric and identify and quantify linear or non-linear directional relationships between two variables. To estimate these measures, we used estimators based on distances between neighbors. The results obtained from simulations demonstrate the applicability of the measurements and their estimations in order to identify the connectivity map of two systems: autoregressive model (which can be compared with the analytical results) and four water tanks (an industrial systems). Keywords— Transfer entropy, causality, continuous processes, industrial processes.\",\"PeriodicalId\":135552,\"journal\":{\"name\":\"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14209/sbrt.2019.1570557119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14209/sbrt.2019.1570557119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了两种信息理论度量的使用:传递熵和直接传递熵,作为检测工业过程(连续系统)中连续变量之间的因果关系和连通性的方法。这些措施是不对称的,并确定和量化两个变量之间的线性或非线性方向关系。为了估计这些度量,我们使用了基于邻居之间距离的估计器。仿真结果证明了测量结果及其估计的适用性,以确定两个系统的连通性图:自回归模型(可与分析结果进行比较)和四个水箱(一个工业系统)。关键词:传递熵,因果关系,连续过程,工业过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Transfer Entropy for Capturing Connectivity and Causality in Industrial Processes
This paper discusses the use of two information theory measures: transfer entropy and direct transfer entropy, as an approach for detection of causality and connectivity between continuous variables in industrial processes (continuous systems). These measures are asymmetric and identify and quantify linear or non-linear directional relationships between two variables. To estimate these measures, we used estimators based on distances between neighbors. The results obtained from simulations demonstrate the applicability of the measurements and their estimations in order to identify the connectivity map of two systems: autoregressive model (which can be compared with the analytical results) and four water tanks (an industrial systems). Keywords— Transfer entropy, causality, continuous processes, industrial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信