{"title":"多指机械手的刚度分析","authors":"Hyoukryeol Choi, W. Chung, Y. Youm","doi":"10.1109/IROS.1993.583240","DOIUrl":null,"url":null,"abstract":"The stiffness of a grasp is analyzed on the basis of the generalized virtual stiffness (GVS) model. Considering that the normal and lateral stiffness of the finger usually are not decoupled due to kinematics and mechanical design, GVS is formulated as coupled virtual springs. The authors relate GVS to the effective fingertip stiffness including the additional stiffness at the joint space. Based on the grasp stiffness formulation, simulations were carried out, focusing on the grasp stability.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stiffness analysis of multi-fingered robot hands\",\"authors\":\"Hyoukryeol Choi, W. Chung, Y. Youm\",\"doi\":\"10.1109/IROS.1993.583240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stiffness of a grasp is analyzed on the basis of the generalized virtual stiffness (GVS) model. Considering that the normal and lateral stiffness of the finger usually are not decoupled due to kinematics and mechanical design, GVS is formulated as coupled virtual springs. The authors relate GVS to the effective fingertip stiffness including the additional stiffness at the joint space. Based on the grasp stiffness formulation, simulations were carried out, focusing on the grasp stability.\",\"PeriodicalId\":299306,\"journal\":{\"name\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1993.583240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The stiffness of a grasp is analyzed on the basis of the generalized virtual stiffness (GVS) model. Considering that the normal and lateral stiffness of the finger usually are not decoupled due to kinematics and mechanical design, GVS is formulated as coupled virtual springs. The authors relate GVS to the effective fingertip stiffness including the additional stiffness at the joint space. Based on the grasp stiffness formulation, simulations were carried out, focusing on the grasp stability.