用微流控触觉传感器监测苯肾上腺素引起的家兔心血管变化

Dan Wang, F. Lattanzio, Mario C. Rodriguez, Z. Hao
{"title":"用微流控触觉传感器监测苯肾上腺素引起的家兔心血管变化","authors":"Dan Wang, F. Lattanzio, Mario C. Rodriguez, Z. Hao","doi":"10.1115/imece2019-11416","DOIUrl":null,"url":null,"abstract":"\n In this work, a microfluidic-based tactile sensor was investigated for monitoring changes in the cardiovascular (CV) system of a rabbit caused by phenylephrine. The sensor was fixed on the front right leg of an anesthetized rabbit to measure the arterial pulse signal. Phenylephrine, as a vasoconstrictor, was used to introduce CV changes of the rabbit. Two sensors, one with high sensitivity and the other with low sensitivity, were tested on their suitability for measuring the pulse signals of the rabbit. The sensor with low sensitivity generated clear pulse signals and was further used to monitor the CV changes of the rabbit caused by phenylephrine. An automated sphygmomanometer and an ECG were used to record blood pressure and heart rate for comparison. Three low-dose injections of phenylephrine were sequentially performed on the rabbit. Through model-based analysis of the measured pulse signals, arterial elastic modulus, arterial radius and pulse wave velocity (PWV) were obtained. As compared with the baseline values measured before injection, injections of phenylephrine caused an increase in mean blood pressure (MAP) recorded by the medical instruments, and a decrease in arterial radius (increase in peripheral vascular resistance (PVR)) and an increase in arterial elastic modulus and PWV captured by the tactile sensor. Thus, the tactile sensor was proven to be feasible for monitoring the changes in the CV system caused by phenylephrine.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the Cardiovascular Changes of a Rabbit Caused by Phenylephrine via a Microfluidic-Based Tactile Sensor\",\"authors\":\"Dan Wang, F. Lattanzio, Mario C. Rodriguez, Z. Hao\",\"doi\":\"10.1115/imece2019-11416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, a microfluidic-based tactile sensor was investigated for monitoring changes in the cardiovascular (CV) system of a rabbit caused by phenylephrine. The sensor was fixed on the front right leg of an anesthetized rabbit to measure the arterial pulse signal. Phenylephrine, as a vasoconstrictor, was used to introduce CV changes of the rabbit. Two sensors, one with high sensitivity and the other with low sensitivity, were tested on their suitability for measuring the pulse signals of the rabbit. The sensor with low sensitivity generated clear pulse signals and was further used to monitor the CV changes of the rabbit caused by phenylephrine. An automated sphygmomanometer and an ECG were used to record blood pressure and heart rate for comparison. Three low-dose injections of phenylephrine were sequentially performed on the rabbit. Through model-based analysis of the measured pulse signals, arterial elastic modulus, arterial radius and pulse wave velocity (PWV) were obtained. As compared with the baseline values measured before injection, injections of phenylephrine caused an increase in mean blood pressure (MAP) recorded by the medical instruments, and a decrease in arterial radius (increase in peripheral vascular resistance (PVR)) and an increase in arterial elastic modulus and PWV captured by the tactile sensor. Thus, the tactile sensor was proven to be feasible for monitoring the changes in the CV system caused by phenylephrine.\",\"PeriodicalId\":332737,\"journal\":{\"name\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,研究了一种基于微流体的触觉传感器,用于监测苯肾上腺素引起的兔子心血管系统的变化。将传感器固定在麻醉兔的右腿前侧,测量动脉脉搏信号。用苯肾上腺素作为血管收缩剂引起家兔CV变化。测试了高灵敏度和低灵敏度两种传感器对兔脉搏信号测量的适用性。该传感器具有低灵敏度,可产生清晰的脉冲信号,用于监测苯肾上腺素引起的家兔CV变化。使用自动血压计和心电图记录血压和心率进行比较。连续给家兔注射三次低剂量的苯肾上腺素。通过对实测脉冲信号进行模型分析,得到了动脉弹性模量、动脉半径和脉搏波速(PWV)。与注射前测量的基线值相比,注射苯肾上腺素导致医疗仪器记录的平均血压(MAP)升高,动脉半径减小(外周血管阻力(PVR)增加),触觉传感器捕获的动脉弹性模量和PWV增加。因此,触觉传感器被证明是可行的监测CV系统的变化引起的苯肾上腺素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring the Cardiovascular Changes of a Rabbit Caused by Phenylephrine via a Microfluidic-Based Tactile Sensor
In this work, a microfluidic-based tactile sensor was investigated for monitoring changes in the cardiovascular (CV) system of a rabbit caused by phenylephrine. The sensor was fixed on the front right leg of an anesthetized rabbit to measure the arterial pulse signal. Phenylephrine, as a vasoconstrictor, was used to introduce CV changes of the rabbit. Two sensors, one with high sensitivity and the other with low sensitivity, were tested on their suitability for measuring the pulse signals of the rabbit. The sensor with low sensitivity generated clear pulse signals and was further used to monitor the CV changes of the rabbit caused by phenylephrine. An automated sphygmomanometer and an ECG were used to record blood pressure and heart rate for comparison. Three low-dose injections of phenylephrine were sequentially performed on the rabbit. Through model-based analysis of the measured pulse signals, arterial elastic modulus, arterial radius and pulse wave velocity (PWV) were obtained. As compared with the baseline values measured before injection, injections of phenylephrine caused an increase in mean blood pressure (MAP) recorded by the medical instruments, and a decrease in arterial radius (increase in peripheral vascular resistance (PVR)) and an increase in arterial elastic modulus and PWV captured by the tactile sensor. Thus, the tactile sensor was proven to be feasible for monitoring the changes in the CV system caused by phenylephrine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信