{"title":"基于noc的FPGA:架构与路由","authors":"R. Gindin, I. Cidon, I. Keidar","doi":"10.1109/NOCS.2007.31","DOIUrl":null,"url":null,"abstract":"We present a novel network-on-chip-based architecture for future programmable chips (FPGAs). A key challenge for FPGA design is supporting numerous highly variable design instances with good performance and low cost. Our architecture minimizes the cost of supporting a wide range of design instances with given throughput requirements by balancing the amount of efficient hard-coded NoC infrastructure and the allocation of \"soft\" networking resources at configuration time. Although traffic patterns are design-specific, the physical link infrastructure is a performance bottleneck, and hence should be hard-coded. It is therefore important to employ routing schemes that allow for high flexibility to efficiently accommodate different traffic patterns during configuration. We examine the required capacity allocation for supporting a collection of typical traffic patterns on such chips under a number of routing schemes. We propose a new routing scheme, weighted ordered toggle (WOT), and show that it allows high design flexibility with low infrastructure cost. Moreover, WOT utilizes simple, small-area, on-chip routers, and has low memory demands","PeriodicalId":132772,"journal":{"name":"First International Symposium on Networks-on-Chip (NOCS'07)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"NoC-Based FPGA: Architecture and Routing\",\"authors\":\"R. Gindin, I. Cidon, I. Keidar\",\"doi\":\"10.1109/NOCS.2007.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel network-on-chip-based architecture for future programmable chips (FPGAs). A key challenge for FPGA design is supporting numerous highly variable design instances with good performance and low cost. Our architecture minimizes the cost of supporting a wide range of design instances with given throughput requirements by balancing the amount of efficient hard-coded NoC infrastructure and the allocation of \\\"soft\\\" networking resources at configuration time. Although traffic patterns are design-specific, the physical link infrastructure is a performance bottleneck, and hence should be hard-coded. It is therefore important to employ routing schemes that allow for high flexibility to efficiently accommodate different traffic patterns during configuration. We examine the required capacity allocation for supporting a collection of typical traffic patterns on such chips under a number of routing schemes. We propose a new routing scheme, weighted ordered toggle (WOT), and show that it allows high design flexibility with low infrastructure cost. Moreover, WOT utilizes simple, small-area, on-chip routers, and has low memory demands\",\"PeriodicalId\":132772,\"journal\":{\"name\":\"First International Symposium on Networks-on-Chip (NOCS'07)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Symposium on Networks-on-Chip (NOCS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOCS.2007.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Networks-on-Chip (NOCS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2007.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a novel network-on-chip-based architecture for future programmable chips (FPGAs). A key challenge for FPGA design is supporting numerous highly variable design instances with good performance and low cost. Our architecture minimizes the cost of supporting a wide range of design instances with given throughput requirements by balancing the amount of efficient hard-coded NoC infrastructure and the allocation of "soft" networking resources at configuration time. Although traffic patterns are design-specific, the physical link infrastructure is a performance bottleneck, and hence should be hard-coded. It is therefore important to employ routing schemes that allow for high flexibility to efficiently accommodate different traffic patterns during configuration. We examine the required capacity allocation for supporting a collection of typical traffic patterns on such chips under a number of routing schemes. We propose a new routing scheme, weighted ordered toggle (WOT), and show that it allows high design flexibility with low infrastructure cost. Moreover, WOT utilizes simple, small-area, on-chip routers, and has low memory demands