应用ANFIS计算可编程通用装配机(PUMA)机器人的运动学逆解

Hugo Adeodatus Hendarto, Munadi, J. Setiawan
{"title":"应用ANFIS计算可编程通用装配机(PUMA)机器人的运动学逆解","authors":"Hugo Adeodatus Hendarto, Munadi, J. Setiawan","doi":"10.1109/ICITACEE.2014.7065710","DOIUrl":null,"url":null,"abstract":"This paper focused on the robot arm's kinematics problem or the connection between angle in each joint and the end-effector's position.f Forward kinematics problem will be deduced using D-H (Denavit- Hartenberg) parameter method. The inverse kinematics problem will be solved using ANFIS (Adaptive Neuro-Fuzzy Inference System) instead of calculating the solution. ANFIS is a feature in MATLAB using ANFIS toolbox. PUMA 560 robot arm virtual model is used in this paper. Three ANFIS training conditions are made to test the influence of training conditions with the result's performance. The difference between end effector's position that using ANFIS and from calculation in forward kinematics will be calculated to test the end effector's position error. By making ANFIS solutions with three different MFs (Membership Functions), influence of MF number are known. With more MF will decrease the position's error. The most MF in this paper is 10 MFs resulting position error by 27.974mm.","PeriodicalId":404830,"journal":{"name":"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"ANFIS application for calculating inverse kinematics of programmable universal machine for assembly (PUMA) robot\",\"authors\":\"Hugo Adeodatus Hendarto, Munadi, J. Setiawan\",\"doi\":\"10.1109/ICITACEE.2014.7065710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focused on the robot arm's kinematics problem or the connection between angle in each joint and the end-effector's position.f Forward kinematics problem will be deduced using D-H (Denavit- Hartenberg) parameter method. The inverse kinematics problem will be solved using ANFIS (Adaptive Neuro-Fuzzy Inference System) instead of calculating the solution. ANFIS is a feature in MATLAB using ANFIS toolbox. PUMA 560 robot arm virtual model is used in this paper. Three ANFIS training conditions are made to test the influence of training conditions with the result's performance. The difference between end effector's position that using ANFIS and from calculation in forward kinematics will be calculated to test the end effector's position error. By making ANFIS solutions with three different MFs (Membership Functions), influence of MF number are known. With more MF will decrease the position's error. The most MF in this paper is 10 MFs resulting position error by 27.974mm.\",\"PeriodicalId\":404830,\"journal\":{\"name\":\"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITACEE.2014.7065710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITACEE.2014.7065710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文主要研究机械臂的运动学问题,即各关节角度与末端执行器位置之间的关系。f采用D-H (Denavit- Hartenberg)参数法推导正运动学问题。逆运动学问题将使用ANFIS(自适应神经模糊推理系统)来解决,而不是计算解。ANFIS是MATLAB中使用的一个特性ANFIS工具箱。本文采用PUMA 560机器人手臂虚拟模型。设计了三种ANFIS训练条件,测试了训练条件对结果性能的影响。利用ANFIS计算的末端执行器位置与正运动学计算的位置之差来测试末端执行器的位置误差。通过三种不同隶属函数(MF)的ANFIS解,了解了MF数的影响。增大MF会减小位置误差。本文的最大MF为10 MF,导致位置误差27.974mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANFIS application for calculating inverse kinematics of programmable universal machine for assembly (PUMA) robot
This paper focused on the robot arm's kinematics problem or the connection between angle in each joint and the end-effector's position.f Forward kinematics problem will be deduced using D-H (Denavit- Hartenberg) parameter method. The inverse kinematics problem will be solved using ANFIS (Adaptive Neuro-Fuzzy Inference System) instead of calculating the solution. ANFIS is a feature in MATLAB using ANFIS toolbox. PUMA 560 robot arm virtual model is used in this paper. Three ANFIS training conditions are made to test the influence of training conditions with the result's performance. The difference between end effector's position that using ANFIS and from calculation in forward kinematics will be calculated to test the end effector's position error. By making ANFIS solutions with three different MFs (Membership Functions), influence of MF number are known. With more MF will decrease the position's error. The most MF in this paper is 10 MFs resulting position error by 27.974mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信