利用级联集成学习从多光谱MRI数据中分割脑肿瘤*

T. Fülöp, Ágnes Győrfi, Szabolcs Csaholczi, L. Kovács, L. Szilágyi
{"title":"利用级联集成学习从多光谱MRI数据中分割脑肿瘤*","authors":"T. Fülöp, Ágnes Győrfi, Szabolcs Csaholczi, L. Kovács, L. Szilágyi","doi":"10.1109/SoSE50414.2020.9130550","DOIUrl":null,"url":null,"abstract":"Ensemble learning methods are frequently employed in medical decision support. In image segmentation problems the ensemble based decisions require a postprocessing, because the ensemble cannot adequately handle the strong correlation of neighbor voxels. This paper proposes a brain tumor segmentation procedure based on an ensemble cascade. The first ensemble consisting of binary decision trees is trained to separate focal lesions from normal tissues based on four observed and 100 computed features. Starting from the intermediary labels provided by the first ensemble, six local features are computed for each voxel that serve as input for the second ensemble. The second ensemble is a classical random forest that enforces the correlation between neighbor pixels, regularizes the shape of the lesions. The segmentation accuracy is characterized by 85.5% overall Dice Score, 0.5% above previous solutions.","PeriodicalId":121664,"journal":{"name":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Brain Tumor Segmentation from Multi-Spectral MRI Data Using Cascaded Ensemble Learning*\",\"authors\":\"T. Fülöp, Ágnes Győrfi, Szabolcs Csaholczi, L. Kovács, L. Szilágyi\",\"doi\":\"10.1109/SoSE50414.2020.9130550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble learning methods are frequently employed in medical decision support. In image segmentation problems the ensemble based decisions require a postprocessing, because the ensemble cannot adequately handle the strong correlation of neighbor voxels. This paper proposes a brain tumor segmentation procedure based on an ensemble cascade. The first ensemble consisting of binary decision trees is trained to separate focal lesions from normal tissues based on four observed and 100 computed features. Starting from the intermediary labels provided by the first ensemble, six local features are computed for each voxel that serve as input for the second ensemble. The second ensemble is a classical random forest that enforces the correlation between neighbor pixels, regularizes the shape of the lesions. The segmentation accuracy is characterized by 85.5% overall Dice Score, 0.5% above previous solutions.\",\"PeriodicalId\":121664,\"journal\":{\"name\":\"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoSE50414.2020.9130550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoSE50414.2020.9130550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

集成学习方法在医疗决策支持中被广泛应用。在图像分割问题中,基于集成的决策需要进行后处理,因为集成不能充分处理相邻体素之间的强相关性。提出了一种基于集合级联的脑肿瘤分割方法。第一个集合由二叉决策树组成,训练基于四个观察特征和100个计算特征将局灶性病变与正常组织分离。从第一个集成提供的中间标签开始,为每个体素计算六个局部特征,作为第二个集成的输入。第二个集合是一个经典的随机森林,它加强了相邻像素之间的相关性,使损伤的形状规范化。分割准确率达到85.5%,比之前的方案高0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Tumor Segmentation from Multi-Spectral MRI Data Using Cascaded Ensemble Learning*
Ensemble learning methods are frequently employed in medical decision support. In image segmentation problems the ensemble based decisions require a postprocessing, because the ensemble cannot adequately handle the strong correlation of neighbor voxels. This paper proposes a brain tumor segmentation procedure based on an ensemble cascade. The first ensemble consisting of binary decision trees is trained to separate focal lesions from normal tissues based on four observed and 100 computed features. Starting from the intermediary labels provided by the first ensemble, six local features are computed for each voxel that serve as input for the second ensemble. The second ensemble is a classical random forest that enforces the correlation between neighbor pixels, regularizes the shape of the lesions. The segmentation accuracy is characterized by 85.5% overall Dice Score, 0.5% above previous solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信