用于纳米热成像和数据存储的亚100nm纳米加热器微探针阵列的制备

Dongwan Lee, T. Ono, T. Abe, M. Esashi
{"title":"用于纳米热成像和数据存储的亚100nm纳米加热器微探针阵列的制备","authors":"Dongwan Lee, T. Ono, T. Abe, M. Esashi","doi":"10.1109/MEMSYS.2001.906514","DOIUrl":null,"url":null,"abstract":"A novel fabrication method of a micro-thermal probe and its array for nanometric thermal imaging and a technological approach for probe-based data storage are presented. A small metal wire for a nano-heater is fabricated at the apex of a pyramidal SiO/sub 2/ tip, which is formed by low temperature oxidation of a silicon etch-pit at 950/spl deg/C, consecutive metal deposition (Pt/Cr or Au/Cr) to fill the metal into the etch-pit, and etching of the SiO/sub 2/ in buffered HF solution. Another metal (Ni) is deposited on the small wire to form a metal-to-metal junction that enables to measure the temperature at the tip end. Metal feed-through are formed on a glass substrate that is bonded with the probe array, which enables to transmit a high-speed signal to a processing-circuit and increase the probe array density. Using the thermal probe, temperature distribution on a sample surface is measured. The heating capability of nano-heater is confirmed by the resistivity change and thermophoton emission from the nano-heater when flowing a small current into the nano-heater. By using a micro-probe, preliminary experiment for data writing and erasing is performed on phase change medium.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Fabrication of microprobe array with sub-100 nm nano-heater for nanometric thermal imaging and data storage\",\"authors\":\"Dongwan Lee, T. Ono, T. Abe, M. Esashi\",\"doi\":\"10.1109/MEMSYS.2001.906514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel fabrication method of a micro-thermal probe and its array for nanometric thermal imaging and a technological approach for probe-based data storage are presented. A small metal wire for a nano-heater is fabricated at the apex of a pyramidal SiO/sub 2/ tip, which is formed by low temperature oxidation of a silicon etch-pit at 950/spl deg/C, consecutive metal deposition (Pt/Cr or Au/Cr) to fill the metal into the etch-pit, and etching of the SiO/sub 2/ in buffered HF solution. Another metal (Ni) is deposited on the small wire to form a metal-to-metal junction that enables to measure the temperature at the tip end. Metal feed-through are formed on a glass substrate that is bonded with the probe array, which enables to transmit a high-speed signal to a processing-circuit and increase the probe array density. Using the thermal probe, temperature distribution on a sample surface is measured. The heating capability of nano-heater is confirmed by the resistivity change and thermophoton emission from the nano-heater when flowing a small current into the nano-heater. By using a micro-probe, preliminary experiment for data writing and erasing is performed on phase change medium.\",\"PeriodicalId\":311365,\"journal\":{\"name\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2001.906514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出了一种用于纳米热成像的微热探头及其阵列的新型制作方法和基于探头的数据存储技术途径。采用950℃低温氧化硅蚀刻坑,连续沉积金属(Pt/Cr或Au/Cr)填充到蚀刻坑中,并在缓冲HF溶液中蚀刻SiO/sub - 2/,在SiO/sub - 2/锥形尖端的顶端制作了用于纳米加热器的小金属丝。另一种金属(Ni)沉积在小导线上,形成金属对金属结,可以测量尖端的温度。在与探头阵列结合的玻璃基板上形成金属馈线,使高速信号传输到处理电路并增加探头阵列密度。利用热探针,测量样品表面的温度分布。通过对纳米加热器进行小电流输入时,其电阻率变化和热光子发射来证实纳米加热器的加热能力。利用微探针对相变介质进行了数据写入和擦除的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of microprobe array with sub-100 nm nano-heater for nanometric thermal imaging and data storage
A novel fabrication method of a micro-thermal probe and its array for nanometric thermal imaging and a technological approach for probe-based data storage are presented. A small metal wire for a nano-heater is fabricated at the apex of a pyramidal SiO/sub 2/ tip, which is formed by low temperature oxidation of a silicon etch-pit at 950/spl deg/C, consecutive metal deposition (Pt/Cr or Au/Cr) to fill the metal into the etch-pit, and etching of the SiO/sub 2/ in buffered HF solution. Another metal (Ni) is deposited on the small wire to form a metal-to-metal junction that enables to measure the temperature at the tip end. Metal feed-through are formed on a glass substrate that is bonded with the probe array, which enables to transmit a high-speed signal to a processing-circuit and increase the probe array density. Using the thermal probe, temperature distribution on a sample surface is measured. The heating capability of nano-heater is confirmed by the resistivity change and thermophoton emission from the nano-heater when flowing a small current into the nano-heater. By using a micro-probe, preliminary experiment for data writing and erasing is performed on phase change medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信