高光谱遥感数据相似度度量方法评价

Junzhe Zhang, Wenquan Zhu, Lingli Wang, Nan Jiang
{"title":"高光谱遥感数据相似度度量方法评价","authors":"Junzhe Zhang, Wenquan Zhu, Lingli Wang, Nan Jiang","doi":"10.1109/IGARSS.2012.6351701","DOIUrl":null,"url":null,"abstract":"Taking the standard vegetation spectral library data and the hyperspectral Hyperion remote sensing image, five similarity measure methods (i.e., Euclidean distance, spectral information divergence, spectral angle cosine, spectral correlation coefficient and spectral angle cosine-Euclidean distance) are comprehensively evaluated under a unified testing framework. The results indicate that the spectral angle cosine-Euclidean distance method demonstrates the most superior ability to distinguish various land cover types among five methods because it fully utilizes both the spectral amplitude and shape feature in the hyperspectral data. A combination of the spectral amplitude-sensitive method and the shape-sensitive method will effectively improve the identification accuracy of different land cover types. These evaluation results can be used to guide the selection of an optimal similarity measure method for automatic classification with hyperspectral data.","PeriodicalId":193438,"journal":{"name":"2012 IEEE International Geoscience and Remote Sensing Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of similarity measure methods for hyperspectral remote sensing data\",\"authors\":\"Junzhe Zhang, Wenquan Zhu, Lingli Wang, Nan Jiang\",\"doi\":\"10.1109/IGARSS.2012.6351701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking the standard vegetation spectral library data and the hyperspectral Hyperion remote sensing image, five similarity measure methods (i.e., Euclidean distance, spectral information divergence, spectral angle cosine, spectral correlation coefficient and spectral angle cosine-Euclidean distance) are comprehensively evaluated under a unified testing framework. The results indicate that the spectral angle cosine-Euclidean distance method demonstrates the most superior ability to distinguish various land cover types among five methods because it fully utilizes both the spectral amplitude and shape feature in the hyperspectral data. A combination of the spectral amplitude-sensitive method and the shape-sensitive method will effectively improve the identification accuracy of different land cover types. These evaluation results can be used to guide the selection of an optimal similarity measure method for automatic classification with hyperspectral data.\",\"PeriodicalId\":193438,\"journal\":{\"name\":\"2012 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2012.6351701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2012.6351701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

以标准植被光谱库数据和Hyperion高光谱遥感影像为基础,在统一的测试框架下,对欧几里得距离、光谱信息发散度、光谱角余弦、光谱相关系数、光谱角余弦-欧几里得距离五种相似度度量方法进行综合评价。结果表明,光谱角余弦-欧几里得距离方法充分利用了高光谱数据的光谱幅度和形状特征,在5种方法中对不同土地覆盖类型的区分能力最强。光谱幅度敏感法与形状敏感法相结合,将有效提高不同土地覆盖类型的识别精度。这些评价结果可用于指导高光谱数据自动分类的最佳相似度度量方法的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of similarity measure methods for hyperspectral remote sensing data
Taking the standard vegetation spectral library data and the hyperspectral Hyperion remote sensing image, five similarity measure methods (i.e., Euclidean distance, spectral information divergence, spectral angle cosine, spectral correlation coefficient and spectral angle cosine-Euclidean distance) are comprehensively evaluated under a unified testing framework. The results indicate that the spectral angle cosine-Euclidean distance method demonstrates the most superior ability to distinguish various land cover types among five methods because it fully utilizes both the spectral amplitude and shape feature in the hyperspectral data. A combination of the spectral amplitude-sensitive method and the shape-sensitive method will effectively improve the identification accuracy of different land cover types. These evaluation results can be used to guide the selection of an optimal similarity measure method for automatic classification with hyperspectral data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信