基于混合优化算法的多模态医学图像配准

Hanling Zhang, Fan Yang
{"title":"基于混合优化算法的多模态医学图像配准","authors":"Hanling Zhang, Fan Yang","doi":"10.1109/BMEI.2008.108","DOIUrl":null,"url":null,"abstract":"Optimization of a similarity metric is a essential component in multimodality medical image registration. In this paper, a hybrid optimization algorithm is proposed. When dealing with multimodality medical images, the authors search the best matching parameters by applying mutual information as similarity measure and hybrid optimization algorithm as search strategy. The registration results prove that the subvoxel accuracy can be achieved and this method is an efficient registration one which can avoid getting into the local optimum.","PeriodicalId":138702,"journal":{"name":"2008 International Conference on BioMedical Engineering and Informatics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multimodality Medical Image Registration Using Hybrid Optimization Algorithm\",\"authors\":\"Hanling Zhang, Fan Yang\",\"doi\":\"10.1109/BMEI.2008.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of a similarity metric is a essential component in multimodality medical image registration. In this paper, a hybrid optimization algorithm is proposed. When dealing with multimodality medical images, the authors search the best matching parameters by applying mutual information as similarity measure and hybrid optimization algorithm as search strategy. The registration results prove that the subvoxel accuracy can be achieved and this method is an efficient registration one which can avoid getting into the local optimum.\",\"PeriodicalId\":138702,\"journal\":{\"name\":\"2008 International Conference on BioMedical Engineering and Informatics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on BioMedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2008.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on BioMedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2008.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在多模态医学图像配准中,相似度度量的优化是一个重要的组成部分。本文提出了一种混合优化算法。在处理多模态医学图像时,采用互信息作为相似度量,混合优化算法作为搜索策略,搜索出最佳匹配参数。配准结果表明,该方法可以达到亚体素精度,是一种有效的配准方法,可以避免陷入局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodality Medical Image Registration Using Hybrid Optimization Algorithm
Optimization of a similarity metric is a essential component in multimodality medical image registration. In this paper, a hybrid optimization algorithm is proposed. When dealing with multimodality medical images, the authors search the best matching parameters by applying mutual information as similarity measure and hybrid optimization algorithm as search strategy. The registration results prove that the subvoxel accuracy can be achieved and this method is an efficient registration one which can avoid getting into the local optimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信