基于机器学习技术的毫米波路径损耗预测分析

Vinu Abinayaa. R, V. G, Shwathi Ramanathan, M. K
{"title":"基于机器学习技术的毫米波路径损耗预测分析","authors":"Vinu Abinayaa. R, V. G, Shwathi Ramanathan, M. K","doi":"10.1109/WiSPNET57748.2023.10134020","DOIUrl":null,"url":null,"abstract":"In this paper, different machine learning algorithms like ridge regression, linear regression, Random forest regression and K-Nearest Neighbors Algorithm (KNN) were used to predict the path loss of millimeter waves (mmWave)under different scenarios like Uma (Urban Macro) and Umi (Urban Micro) thereby comparing the accuracy of each algorithm. mmWaves are prone to attenuation due to different environmental factors like foliage, size and rate of raindrops, etc. as the size of these objects are comparable to the wavelength of the mmWaves. Since mmWave is the basis for 5G communication it is imperative to analyze and predict the path loss exponent under different scenarios. From the analysis performed it is seen that linear regression provides better accuracy compared to the other models.","PeriodicalId":150576,"journal":{"name":"2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Millimeter Wave Path Loss Prediction using Machine Learning Techniques\",\"authors\":\"Vinu Abinayaa. R, V. G, Shwathi Ramanathan, M. K\",\"doi\":\"10.1109/WiSPNET57748.2023.10134020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, different machine learning algorithms like ridge regression, linear regression, Random forest regression and K-Nearest Neighbors Algorithm (KNN) were used to predict the path loss of millimeter waves (mmWave)under different scenarios like Uma (Urban Macro) and Umi (Urban Micro) thereby comparing the accuracy of each algorithm. mmWaves are prone to attenuation due to different environmental factors like foliage, size and rate of raindrops, etc. as the size of these objects are comparable to the wavelength of the mmWaves. Since mmWave is the basis for 5G communication it is imperative to analyze and predict the path loss exponent under different scenarios. From the analysis performed it is seen that linear regression provides better accuracy compared to the other models.\",\"PeriodicalId\":150576,\"journal\":{\"name\":\"2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiSPNET57748.2023.10134020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSPNET57748.2023.10134020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用脊回归、线性回归、随机森林回归和k近邻算法(KNN)等不同的机器学习算法,对Uma (Urban Macro)和Umi (Urban Micro)等不同场景下毫米波(mmWave)的路径损耗进行预测,比较各算法的准确率。由于这些物体的大小与毫米波的波长相当,因此毫米波容易因不同的环境因素(如树叶、雨滴的大小和速率等)而衰减。毫米波是5G通信的基础,对不同场景下的路径损耗指数进行分析和预测势在必行。从所进行的分析可以看出,与其他模型相比,线性回归提供了更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Millimeter Wave Path Loss Prediction using Machine Learning Techniques
In this paper, different machine learning algorithms like ridge regression, linear regression, Random forest regression and K-Nearest Neighbors Algorithm (KNN) were used to predict the path loss of millimeter waves (mmWave)under different scenarios like Uma (Urban Macro) and Umi (Urban Micro) thereby comparing the accuracy of each algorithm. mmWaves are prone to attenuation due to different environmental factors like foliage, size and rate of raindrops, etc. as the size of these objects are comparable to the wavelength of the mmWaves. Since mmWave is the basis for 5G communication it is imperative to analyze and predict the path loss exponent under different scenarios. From the analysis performed it is seen that linear regression provides better accuracy compared to the other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信