学习实时抓取策略

Bidan Huang, S. El-Khoury, Miao Li, J. Bryson, A. Billard
{"title":"学习实时抓取策略","authors":"Bidan Huang, S. El-Khoury, Miao Li, J. Bryson, A. Billard","doi":"10.1109/ICRA.2013.6630634","DOIUrl":null,"url":null,"abstract":"Real time planning strategy is crucial for robots working in dynamic environments. In particular, robot grasping tasks require quick reactions in many applications such as human-robot interaction. In this paper, we propose an approach for grasp learning that enables robots to plan new grasps rapidly according to the object's position and orientation. This is achieved by taking a three-step approach. In the first step, we compute a variety of stable grasps for a given object. In the second step, we propose a strategy that learns a probability distribution of grasps based on the computed grasps. In the third step, we use the model to quickly generate grasps. We have tested the statistical method on the 9 degrees of freedom hand of the iCub humanoid robot and the 4 degrees of freedom Barrett hand. The average computation time for generating one grasp is less than 10 milliseconds. The experiments were run in Matlab on a machine with 2.8GHz processor.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Learning a real time grasping strategy\",\"authors\":\"Bidan Huang, S. El-Khoury, Miao Li, J. Bryson, A. Billard\",\"doi\":\"10.1109/ICRA.2013.6630634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real time planning strategy is crucial for robots working in dynamic environments. In particular, robot grasping tasks require quick reactions in many applications such as human-robot interaction. In this paper, we propose an approach for grasp learning that enables robots to plan new grasps rapidly according to the object's position and orientation. This is achieved by taking a three-step approach. In the first step, we compute a variety of stable grasps for a given object. In the second step, we propose a strategy that learns a probability distribution of grasps based on the computed grasps. In the third step, we use the model to quickly generate grasps. We have tested the statistical method on the 9 degrees of freedom hand of the iCub humanoid robot and the 4 degrees of freedom Barrett hand. The average computation time for generating one grasp is less than 10 milliseconds. The experiments were run in Matlab on a machine with 2.8GHz processor.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6630634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

实时规划策略是机器人在动态环境中工作的关键。特别是在人机交互等许多应用中,机器人抓取任务需要快速反应。在本文中,我们提出了一种抓取学习方法,使机器人能够根据物体的位置和方向快速规划新的抓取。这是通过采取三步方法来实现的。在第一步中,我们计算给定对象的各种稳定抓地力。在第二步中,我们提出了一种策略,该策略基于计算出的抓地力学习抓地力的概率分布。在第三步中,我们使用模型快速生成抓取。我们对iCub仿人机器人的9自由度手和4自由度Barrett手进行了统计方法的测试。生成一个抓取的平均计算时间小于10毫秒。实验在2.8GHz处理器的机器上用Matlab运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a real time grasping strategy
Real time planning strategy is crucial for robots working in dynamic environments. In particular, robot grasping tasks require quick reactions in many applications such as human-robot interaction. In this paper, we propose an approach for grasp learning that enables robots to plan new grasps rapidly according to the object's position and orientation. This is achieved by taking a three-step approach. In the first step, we compute a variety of stable grasps for a given object. In the second step, we propose a strategy that learns a probability distribution of grasps based on the computed grasps. In the third step, we use the model to quickly generate grasps. We have tested the statistical method on the 9 degrees of freedom hand of the iCub humanoid robot and the 4 degrees of freedom Barrett hand. The average computation time for generating one grasp is less than 10 milliseconds. The experiments were run in Matlab on a machine with 2.8GHz processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信