{"title":"基于模型的机器人位置控制策略的实验比较","authors":"G. Alici, R. Daniel","doi":"10.1109/IROS.1993.583082","DOIUrl":null,"url":null,"abstract":"An experimental comparison of model-based joint space position control (JSPC) and Cartesian space position control (CSPC) strategies for the same manipulator, trajectory, sample rate, and dynamic model is presented. It is shown that the achievable tracking performance (in terms of the peak tracking error) and disturbance rejection capability of JSPC was experimentally better than that of CSPC for the same sample rate. High feedback gains for CSPC were found to be unachievable, which the authors suggest is due to the incompatibility between actuation and control space. The effect of varying the trajectory velocity, and of using a diagonal or full mass matrix in the control torque computation on the performance of the both strategies is also presented.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental comparison of model-based robot position control strategies\",\"authors\":\"G. Alici, R. Daniel\",\"doi\":\"10.1109/IROS.1993.583082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental comparison of model-based joint space position control (JSPC) and Cartesian space position control (CSPC) strategies for the same manipulator, trajectory, sample rate, and dynamic model is presented. It is shown that the achievable tracking performance (in terms of the peak tracking error) and disturbance rejection capability of JSPC was experimentally better than that of CSPC for the same sample rate. High feedback gains for CSPC were found to be unachievable, which the authors suggest is due to the incompatibility between actuation and control space. The effect of varying the trajectory velocity, and of using a diagonal or full mass matrix in the control torque computation on the performance of the both strategies is also presented.\",\"PeriodicalId\":299306,\"journal\":{\"name\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1993.583082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental comparison of model-based robot position control strategies
An experimental comparison of model-based joint space position control (JSPC) and Cartesian space position control (CSPC) strategies for the same manipulator, trajectory, sample rate, and dynamic model is presented. It is shown that the achievable tracking performance (in terms of the peak tracking error) and disturbance rejection capability of JSPC was experimentally better than that of CSPC for the same sample rate. High feedback gains for CSPC were found to be unachievable, which the authors suggest is due to the incompatibility between actuation and control space. The effect of varying the trajectory velocity, and of using a diagonal or full mass matrix in the control torque computation on the performance of the both strategies is also presented.