基于极端梯度增强分类器的语音紊乱自动检测系统

Mohammed Saad Darouiche, Hicham El Moubtahij, Majid Ben Yakhlef, El Bachir Tazi
{"title":"基于极端梯度增强分类器的语音紊乱自动检测系统","authors":"Mohammed Saad Darouiche, Hicham El Moubtahij, Majid Ben Yakhlef, El Bachir Tazi","doi":"10.1109/IRASET52964.2022.9737980","DOIUrl":null,"url":null,"abstract":"This paper describes our approach to develop an Automatic Voice Disorder Detection (AVDD) system that can diagnose the patient voice and determine if the voice is normal and healthy or disordered due to a certain pathology. Our system is based on the Saarbrucken Voice Dataset (SVD) to feed our machine-learning model, and exploiting the Mel Frequency Cepstral Coefficients (MFCC) as an extracted feature. For the classification, we chose the Extreme Gradient Boosting (XGBoost) classifier.","PeriodicalId":377115,"journal":{"name":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Automatic Voice Disorder Detection System Based On Extreme Gradient Boosting Classifier\",\"authors\":\"Mohammed Saad Darouiche, Hicham El Moubtahij, Majid Ben Yakhlef, El Bachir Tazi\",\"doi\":\"10.1109/IRASET52964.2022.9737980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our approach to develop an Automatic Voice Disorder Detection (AVDD) system that can diagnose the patient voice and determine if the voice is normal and healthy or disordered due to a certain pathology. Our system is based on the Saarbrucken Voice Dataset (SVD) to feed our machine-learning model, and exploiting the Mel Frequency Cepstral Coefficients (MFCC) as an extracted feature. For the classification, we chose the Extreme Gradient Boosting (XGBoost) classifier.\",\"PeriodicalId\":377115,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET52964.2022.9737980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET52964.2022.9737980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了我们开发的语音障碍自动检测(AVDD)系统的方法,该系统可以诊断患者的语音,并确定语音是正常健康的还是由于某种病理导致的紊乱。我们的系统基于Saarbrucken语音数据集(SVD)来提供我们的机器学习模型,并利用Mel频率倒谱系数(MFCC)作为提取的特征。对于分类,我们选择了极端梯度增强(XGBoost)分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Automatic Voice Disorder Detection System Based On Extreme Gradient Boosting Classifier
This paper describes our approach to develop an Automatic Voice Disorder Detection (AVDD) system that can diagnose the patient voice and determine if the voice is normal and healthy or disordered due to a certain pathology. Our system is based on the Saarbrucken Voice Dataset (SVD) to feed our machine-learning model, and exploiting the Mel Frequency Cepstral Coefficients (MFCC) as an extracted feature. For the classification, we chose the Extreme Gradient Boosting (XGBoost) classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信