探索Twitter情感分析的模型迁移策略

Eliseu Guimarães, Jonnathan Carvalho, A. Paes, Alexandre Plastino
{"title":"探索Twitter情感分析的模型迁移策略","authors":"Eliseu Guimarães, Jonnathan Carvalho, A. Paes, Alexandre Plastino","doi":"10.5753/eniac.2021.18236","DOIUrl":null,"url":null,"abstract":"As mídias sociais se tornaram um ambiente popular para comunicação. Por isso, analisar o sentimento que o usuário expressa em suas postagens nas redes sociais é um importante campo de pesquisa. No entanto, detectar a polaridade em tais conteúdos é um desafio, em parte porque a quantidade de dados rotulados para treinar classificadores é escassa em muitas situações. Este artigo explora estratégias para reusar um modelo aprendido a partir de conjunto de dados fonte para classificar instâncias em um conjunto de dados de destino. Os experimentos são conduzidos com 22 conjuntos de dados de análise de sentimento em tweets e abordagens baseadas em métricas de similaridade. Os resultados apontam que o tamanho do conjunto de treinamento fonte desempenha um papel essencial no desempenho dos classificadores quando usados para inferir a classe das instâncias alvo.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring model transfer strategies for sentiment analysis in Twitter\",\"authors\":\"Eliseu Guimarães, Jonnathan Carvalho, A. Paes, Alexandre Plastino\",\"doi\":\"10.5753/eniac.2021.18236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As mídias sociais se tornaram um ambiente popular para comunicação. Por isso, analisar o sentimento que o usuário expressa em suas postagens nas redes sociais é um importante campo de pesquisa. No entanto, detectar a polaridade em tais conteúdos é um desafio, em parte porque a quantidade de dados rotulados para treinar classificadores é escassa em muitas situações. Este artigo explora estratégias para reusar um modelo aprendido a partir de conjunto de dados fonte para classificar instâncias em um conjunto de dados de destino. Os experimentos são conduzidos com 22 conjuntos de dados de análise de sentimento em tweets e abordagens baseadas em métricas de similaridade. Os resultados apontam que o tamanho do conjunto de treinamento fonte desempenha um papel essencial no desempenho dos classificadores quando usados para inferir a classe das instâncias alvo.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体已经成为一种流行的交流环境。因此,分析用户在社交网络帖子中表达的情绪是一个重要的研究领域。然而,检测这些内容中的极性是一个挑战,部分原因是在许多情况下,用于训练分类器的标记数据数量很少。本文探讨了重用从源数据集学习到的模型来对目标数据集中的实例进行分类的策略。实验使用22组推文情绪分析数据和基于相似性指标的方法进行。结果表明,源训练集的大小对分类器在推断目标实例类时的性能起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring model transfer strategies for sentiment analysis in Twitter
As mídias sociais se tornaram um ambiente popular para comunicação. Por isso, analisar o sentimento que o usuário expressa em suas postagens nas redes sociais é um importante campo de pesquisa. No entanto, detectar a polaridade em tais conteúdos é um desafio, em parte porque a quantidade de dados rotulados para treinar classificadores é escassa em muitas situações. Este artigo explora estratégias para reusar um modelo aprendido a partir de conjunto de dados fonte para classificar instâncias em um conjunto de dados de destino. Os experimentos são conduzidos com 22 conjuntos de dados de análise de sentimento em tweets e abordagens baseadas em métricas de similaridade. Os resultados apontam que o tamanho do conjunto de treinamento fonte desempenha um papel essencial no desempenho dos classificadores quando usados para inferir a classe das instâncias alvo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信