I. Stupia, L. Vandendorpe, L. Sanguinetti, G. Bacci
{"title":"基于中继辅助异构网络的分布式节能功率优化","authors":"I. Stupia, L. Vandendorpe, L. Sanguinetti, G. Bacci","doi":"10.1109/WIOPT.2014.6850347","DOIUrl":null,"url":null,"abstract":"This paper presents an energy-efficient power allocation for relay-aided heterogeneous networks subject to coupling convex constraints, that make the problem at hand a generalized Nash equilibrium problem. The solution to the resource allocation problem is derived using a sequential penalty approach based on the advanced theory of quasi variational inequality, which allows the network to converge to its generalized Nash equilibrium in a distributed manner. The main feature of the proposed approach is its decomposability, which leads to a two-layer distributed algorithm with provable convergence.","PeriodicalId":381489,"journal":{"name":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Distributed energy-efficient power optimization for relay-aided heterogeneous networks\",\"authors\":\"I. Stupia, L. Vandendorpe, L. Sanguinetti, G. Bacci\",\"doi\":\"10.1109/WIOPT.2014.6850347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an energy-efficient power allocation for relay-aided heterogeneous networks subject to coupling convex constraints, that make the problem at hand a generalized Nash equilibrium problem. The solution to the resource allocation problem is derived using a sequential penalty approach based on the advanced theory of quasi variational inequality, which allows the network to converge to its generalized Nash equilibrium in a distributed manner. The main feature of the proposed approach is its decomposability, which leads to a two-layer distributed algorithm with provable convergence.\",\"PeriodicalId\":381489,\"journal\":{\"name\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2014.6850347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2014.6850347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed energy-efficient power optimization for relay-aided heterogeneous networks
This paper presents an energy-efficient power allocation for relay-aided heterogeneous networks subject to coupling convex constraints, that make the problem at hand a generalized Nash equilibrium problem. The solution to the resource allocation problem is derived using a sequential penalty approach based on the advanced theory of quasi variational inequality, which allows the network to converge to its generalized Nash equilibrium in a distributed manner. The main feature of the proposed approach is its decomposability, which leads to a two-layer distributed algorithm with provable convergence.