自适应神经模糊推理系统在硫酸盐还原菌检测中的应用研究

U. Chandaran, Z. Abdul Halim, L. Sian
{"title":"自适应神经模糊推理系统在硫酸盐还原菌检测中的应用研究","authors":"U. Chandaran, Z. Abdul Halim, L. Sian","doi":"10.1109/ICCIRCUITSANDSYSTEMS.2012.6408335","DOIUrl":null,"url":null,"abstract":"The detection of sulfate reducing bacteria (SRB) in a water system is very crucial to prevent the corrosion of iron material in the system. In this regard, a method of using an Adaptive Neuro-fuzzy Inference System (ANFIS) is studied for the modeling and detection of SRB in a medium. A study on ANFIS concept is made to further understand the structure and criteria of the system. The experimental data obtained from data acquisition board are used for training of the ANFIS system. Three parameters (voltage, temperature and humidity) are selected as major factors in determining existence of the bacteria. Two membership functions (trapezoidal and bell-shaped) are used for training the data. The results show that ANFIS with trapezoidal membership function is the best with its average error, 1.66E-07 at epoch 250.","PeriodicalId":325846,"journal":{"name":"2012 IEEE International Conference on Circuits and Systems (ICCAS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on sulfate reducing bacteria detection using Adaptive Neuro-fuzzy Inference System\",\"authors\":\"U. Chandaran, Z. Abdul Halim, L. Sian\",\"doi\":\"10.1109/ICCIRCUITSANDSYSTEMS.2012.6408335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of sulfate reducing bacteria (SRB) in a water system is very crucial to prevent the corrosion of iron material in the system. In this regard, a method of using an Adaptive Neuro-fuzzy Inference System (ANFIS) is studied for the modeling and detection of SRB in a medium. A study on ANFIS concept is made to further understand the structure and criteria of the system. The experimental data obtained from data acquisition board are used for training of the ANFIS system. Three parameters (voltage, temperature and humidity) are selected as major factors in determining existence of the bacteria. Two membership functions (trapezoidal and bell-shaped) are used for training the data. The results show that ANFIS with trapezoidal membership function is the best with its average error, 1.66E-07 at epoch 250.\",\"PeriodicalId\":325846,\"journal\":{\"name\":\"2012 IEEE International Conference on Circuits and Systems (ICCAS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Circuits and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIRCUITSANDSYSTEMS.2012.6408335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Circuits and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIRCUITSANDSYSTEMS.2012.6408335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水系统中硫酸盐还原菌(SRB)的检测对于防止系统中铁材料的腐蚀至关重要。为此,研究了一种利用自适应神经模糊推理系统(ANFIS)对介质中SRB进行建模和检测的方法。研究了ANFIS的概念,进一步了解了系统的结构和准则。数据采集板采集的实验数据用于ANFIS系统的训练。选择三个参数(电压、温度和湿度)作为决定细菌存在的主要因素。两个隶属函数(梯形和钟形)用于训练数据。结果表明,采用梯形隶属函数的ANFIS算法效果最好,在250 epoch的平均误差为1.66E-07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on sulfate reducing bacteria detection using Adaptive Neuro-fuzzy Inference System
The detection of sulfate reducing bacteria (SRB) in a water system is very crucial to prevent the corrosion of iron material in the system. In this regard, a method of using an Adaptive Neuro-fuzzy Inference System (ANFIS) is studied for the modeling and detection of SRB in a medium. A study on ANFIS concept is made to further understand the structure and criteria of the system. The experimental data obtained from data acquisition board are used for training of the ANFIS system. Three parameters (voltage, temperature and humidity) are selected as major factors in determining existence of the bacteria. Two membership functions (trapezoidal and bell-shaped) are used for training the data. The results show that ANFIS with trapezoidal membership function is the best with its average error, 1.66E-07 at epoch 250.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信