基于解耦回波状态网络的海杂波目标检测分析

Zhan Xu, Jianwei Wan, Fang Su, Yanbo Xue
{"title":"基于解耦回波状态网络的海杂波目标检测分析","authors":"Zhan Xu, Jianwei Wan, Fang Su, Yanbo Xue","doi":"10.1109/ICSESS.2012.6269512","DOIUrl":null,"url":null,"abstract":"This letter use echo state network (ESN) and three decoupled echo state network (DESN) to predict the sea clutter time series and detect target embedded in sea clutter. The performance of predicting and detecting using these methods is compared. A set of time series from IPIX radar data is tested. Numerical experiments reveal that DESN with maximum available information (DESN+MaxInfo) and DESN with reservoir prediction (DESN+RP) show higher prediction precision in pure sea clutter data. ESN has the better effect for detecting target in sea clutter.","PeriodicalId":205738,"journal":{"name":"2012 IEEE International Conference on Computer Science and Automation Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of detecting target in sea clutter using decoupled echo state network\",\"authors\":\"Zhan Xu, Jianwei Wan, Fang Su, Yanbo Xue\",\"doi\":\"10.1109/ICSESS.2012.6269512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter use echo state network (ESN) and three decoupled echo state network (DESN) to predict the sea clutter time series and detect target embedded in sea clutter. The performance of predicting and detecting using these methods is compared. A set of time series from IPIX radar data is tested. Numerical experiments reveal that DESN with maximum available information (DESN+MaxInfo) and DESN with reservoir prediction (DESN+RP) show higher prediction precision in pure sea clutter data. ESN has the better effect for detecting target in sea clutter.\",\"PeriodicalId\":205738,\"journal\":{\"name\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2012.6269512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2012.6269512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文采用回声状态网络(ESN)和三解耦回声状态网络(DESN)预测海杂波时间序列,检测嵌入海杂波中的目标。比较了这些方法的预测和检测性能。对IPIX雷达数据的一组时间序列进行了测试。数值实验表明,最大有效信息DESN+MaxInfo和储层预测DESN+RP在纯海杂波数据中具有较高的预测精度。回声状态网络在海杂波条件下具有较好的目标检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of detecting target in sea clutter using decoupled echo state network
This letter use echo state network (ESN) and three decoupled echo state network (DESN) to predict the sea clutter time series and detect target embedded in sea clutter. The performance of predicting and detecting using these methods is compared. A set of time series from IPIX radar data is tested. Numerical experiments reveal that DESN with maximum available information (DESN+MaxInfo) and DESN with reservoir prediction (DESN+RP) show higher prediction precision in pure sea clutter data. ESN has the better effect for detecting target in sea clutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信