Geancarlo Abich, Marcelo G. Mandelli, Felipe Rosa, F. Moraes, Luciano Ost, R. Reis
{"title":"扩展FreeRTOS以支持多处理器系统中的动态和分布式映射","authors":"Geancarlo Abich, Marcelo G. Mandelli, Felipe Rosa, F. Moraes, Luciano Ost, R. Reis","doi":"10.1109/ICECS.2016.7841301","DOIUrl":null,"url":null,"abstract":"With the ever-increasing complexity of both embedded application workloads and multiprocessor platforms grows the demand for efficient mapping heuristics able of allocating several application workloads at runtime. The majority of promoted mapping techniques are bespoke implementations that consider an in-house operating system, which is developed to a particular architecture, restricting its adoption in other platforms. This work proposes a FreeRTOS extension that supports distributed task mapping heuristics, which enables to balance application workloads in multiprocessor architectures at runtime. Promoted extension is validated through a trustworthy number of scenarios considering large scale Cortex-M-based multiprocessor systems executing up to 600 application tasks.","PeriodicalId":205556,"journal":{"name":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Extending FreeRTOS to support dynamic and distributed mapping in multiprocessor systems\",\"authors\":\"Geancarlo Abich, Marcelo G. Mandelli, Felipe Rosa, F. Moraes, Luciano Ost, R. Reis\",\"doi\":\"10.1109/ICECS.2016.7841301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ever-increasing complexity of both embedded application workloads and multiprocessor platforms grows the demand for efficient mapping heuristics able of allocating several application workloads at runtime. The majority of promoted mapping techniques are bespoke implementations that consider an in-house operating system, which is developed to a particular architecture, restricting its adoption in other platforms. This work proposes a FreeRTOS extension that supports distributed task mapping heuristics, which enables to balance application workloads in multiprocessor architectures at runtime. Promoted extension is validated through a trustworthy number of scenarios considering large scale Cortex-M-based multiprocessor systems executing up to 600 application tasks.\",\"PeriodicalId\":205556,\"journal\":{\"name\":\"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2016.7841301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2016.7841301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending FreeRTOS to support dynamic and distributed mapping in multiprocessor systems
With the ever-increasing complexity of both embedded application workloads and multiprocessor platforms grows the demand for efficient mapping heuristics able of allocating several application workloads at runtime. The majority of promoted mapping techniques are bespoke implementations that consider an in-house operating system, which is developed to a particular architecture, restricting its adoption in other platforms. This work proposes a FreeRTOS extension that supports distributed task mapping heuristics, which enables to balance application workloads in multiprocessor architectures at runtime. Promoted extension is validated through a trustworthy number of scenarios considering large scale Cortex-M-based multiprocessor systems executing up to 600 application tasks.