J. Hertzberg, A. Córcoles, M. Takita, N. Bronn, E. Magesan, M. Brink, S. Sheldon, J. Gambetta, J. Chow
{"title":"利用超导量子比特阵列构建量子逻辑电路","authors":"J. Hertzberg, A. Córcoles, M. Takita, N. Bronn, E. Magesan, M. Brink, S. Sheldon, J. Gambetta, J. Chow","doi":"10.1109/DRC.2016.7548499","DOIUrl":null,"url":null,"abstract":"Quantum computing holds the promise of a novel form of information processing in which data resides in quantum states. By exploiting superpositions and entanglement among these states, quantum logic operations are expected to far surpass conventional digital logic in certain classes of problems. To realize this prospect, we employ superconducting circuits at millikelvin temperatures. The nonlinearity of a Josephson tunnel junction enables a two-level quantum system, or qubit, with excitation energy in the microwave regime. Key recent advances in such devices are the demonstration of robust and simple multi-qubit gates, the integration of superconducting qubits into arrays of four or more, and gate fidelities reaching 99%. [1,2,3].","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building quantum logic circuits using arrays of superconducting qubits\",\"authors\":\"J. Hertzberg, A. Córcoles, M. Takita, N. Bronn, E. Magesan, M. Brink, S. Sheldon, J. Gambetta, J. Chow\",\"doi\":\"10.1109/DRC.2016.7548499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing holds the promise of a novel form of information processing in which data resides in quantum states. By exploiting superpositions and entanglement among these states, quantum logic operations are expected to far surpass conventional digital logic in certain classes of problems. To realize this prospect, we employ superconducting circuits at millikelvin temperatures. The nonlinearity of a Josephson tunnel junction enables a two-level quantum system, or qubit, with excitation energy in the microwave regime. Key recent advances in such devices are the demonstration of robust and simple multi-qubit gates, the integration of superconducting qubits into arrays of four or more, and gate fidelities reaching 99%. [1,2,3].\",\"PeriodicalId\":310524,\"journal\":{\"name\":\"2016 74th Annual Device Research Conference (DRC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 74th Annual Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2016.7548499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Building quantum logic circuits using arrays of superconducting qubits
Quantum computing holds the promise of a novel form of information processing in which data resides in quantum states. By exploiting superpositions and entanglement among these states, quantum logic operations are expected to far surpass conventional digital logic in certain classes of problems. To realize this prospect, we employ superconducting circuits at millikelvin temperatures. The nonlinearity of a Josephson tunnel junction enables a two-level quantum system, or qubit, with excitation energy in the microwave regime. Key recent advances in such devices are the demonstration of robust and simple multi-qubit gates, the integration of superconducting qubits into arrays of four or more, and gate fidelities reaching 99%. [1,2,3].