属性:选择性学习和影响力

ERN: Search Pub Date : 2020-04-15 DOI:10.2139/ssrn.3468546
Arjada Bardhi
{"title":"属性:选择性学习和影响力","authors":"Arjada Bardhi","doi":"10.2139/ssrn.3468546","DOIUrl":null,"url":null,"abstract":"When different stages of the evaluation of a multi-attribute project rest with conflicting economic actors, which attributes are selectively explored and why? We provide a model of attribute sampling in which correlation across attributes is flexibly modeled through Gaussian processes. In the absence of conflict, the optimal sample of attributes maximizes informativeness by balancing out-of-sample extrapolation with correlation within the sample. It depends neither on the prior value of the project nor on the format of sampling. Agency conflict, in contrast, gives rise to distortions. Sampling serves a dual purpose of generating valuable information and influencing the co-player. When influence takes priority, optimal sampling either suppresses informativeness for both players or negatively correlates their interests. Casting site selection as an attribute problem, our framework provides a theoretical rationale for site selection bias in small-scale program evaluation.","PeriodicalId":153208,"journal":{"name":"ERN: Search","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Attributes: Selective Learning and Influence\",\"authors\":\"Arjada Bardhi\",\"doi\":\"10.2139/ssrn.3468546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When different stages of the evaluation of a multi-attribute project rest with conflicting economic actors, which attributes are selectively explored and why? We provide a model of attribute sampling in which correlation across attributes is flexibly modeled through Gaussian processes. In the absence of conflict, the optimal sample of attributes maximizes informativeness by balancing out-of-sample extrapolation with correlation within the sample. It depends neither on the prior value of the project nor on the format of sampling. Agency conflict, in contrast, gives rise to distortions. Sampling serves a dual purpose of generating valuable information and influencing the co-player. When influence takes priority, optimal sampling either suppresses informativeness for both players or negatively correlates their interests. Casting site selection as an attribute problem, our framework provides a theoretical rationale for site selection bias in small-scale program evaluation.\",\"PeriodicalId\":153208,\"journal\":{\"name\":\"ERN: Search\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3468546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3468546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当一个多属性项目评估的不同阶段与相互冲突的经济行为者有关时,哪些属性被选择性地探索,为什么?我们提出了一种属性抽样模型,该模型通过高斯过程灵活地建模了属性间的相关性。在没有冲突的情况下,最优的属性样本通过平衡样本外推断和样本内的相关性来最大化信息。它既不取决于项目的先前值,也不取决于抽样的形式。相反,机构冲突造成扭曲。采样具有双重目的,即产生有价值的信息并影响合作玩家。当影响优先时,最优抽样要么抑制双方的信息,要么使他们的兴趣负相关。将选址作为一个属性问题,我们的框架为小规模项目评估中的选址偏差提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attributes: Selective Learning and Influence
When different stages of the evaluation of a multi-attribute project rest with conflicting economic actors, which attributes are selectively explored and why? We provide a model of attribute sampling in which correlation across attributes is flexibly modeled through Gaussian processes. In the absence of conflict, the optimal sample of attributes maximizes informativeness by balancing out-of-sample extrapolation with correlation within the sample. It depends neither on the prior value of the project nor on the format of sampling. Agency conflict, in contrast, gives rise to distortions. Sampling serves a dual purpose of generating valuable information and influencing the co-player. When influence takes priority, optimal sampling either suppresses informativeness for both players or negatively correlates their interests. Casting site selection as an attribute problem, our framework provides a theoretical rationale for site selection bias in small-scale program evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信