使用自我组织映射方法和平均链接方法进行比较(案例研究:印尼每个省的PDRB数据)

G. Haumahu
{"title":"使用自我组织映射方法和平均链接方法进行比较(案例研究:印尼每个省的PDRB数据)","authors":"G. Haumahu","doi":"10.30598/tensorvol1iss2pp93-99","DOIUrl":null,"url":null,"abstract":"Gross domestic regional product (GDRP) is one of important indicators that can be used to determine economic conditions in some areas. This makes GDRP is very interesting to be studied.  In this paper we cluster 33 provinces in Indonesia based on GDRP in 2013. We use self organizing and average linkage method of cluster analysis to investigate it. We also compare the results of both methods. We found that Average linkage method has better performance than self organizing method because it has smaller rasio.","PeriodicalId":294430,"journal":{"name":"Tensor: Pure and Applied Mathematics Journal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Hasil Pengelompokan Menggunakan Metode Self Organizing Maps dan Metode Average Linkage (Studi Kasus: Data PDRB tiap provinsi di Indonesia)\",\"authors\":\"G. Haumahu\",\"doi\":\"10.30598/tensorvol1iss2pp93-99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gross domestic regional product (GDRP) is one of important indicators that can be used to determine economic conditions in some areas. This makes GDRP is very interesting to be studied.  In this paper we cluster 33 provinces in Indonesia based on GDRP in 2013. We use self organizing and average linkage method of cluster analysis to investigate it. We also compare the results of both methods. We found that Average linkage method has better performance than self organizing method because it has smaller rasio.\",\"PeriodicalId\":294430,\"journal\":{\"name\":\"Tensor: Pure and Applied Mathematics Journal\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tensor: Pure and Applied Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30598/tensorvol1iss2pp93-99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tensor: Pure and Applied Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/tensorvol1iss2pp93-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国内区域生产总值(gdp)是衡量某些地区经济状况的重要指标之一。这使得gdp的研究非常有趣。本文基于2013年的gdp对印尼33个省进行了聚类。利用聚类分析的自组织和平均联系方法对其进行了研究。我们还比较了两种方法的结果。结果表明,平均链接法比自组织法具有更小的比值,具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Hasil Pengelompokan Menggunakan Metode Self Organizing Maps dan Metode Average Linkage (Studi Kasus: Data PDRB tiap provinsi di Indonesia)
Gross domestic regional product (GDRP) is one of important indicators that can be used to determine economic conditions in some areas. This makes GDRP is very interesting to be studied.  In this paper we cluster 33 provinces in Indonesia based on GDRP in 2013. We use self organizing and average linkage method of cluster analysis to investigate it. We also compare the results of both methods. We found that Average linkage method has better performance than self organizing method because it has smaller rasio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信