M. Bortolozzi, L. Branz, A. Tessarolo, C. Bruzzese
{"title":"改进了鼠笼式异步电动机转子矩形槽漏感的解析计算方法","authors":"M. Bortolozzi, L. Branz, A. Tessarolo, C. Bruzzese","doi":"10.1109/SMART.2015.7399266","DOIUrl":null,"url":null,"abstract":"Squirrel-cage induction motors are the most widely used type of electric machinery in industrial applications thanks to their rugged, cheap and robust construction. For the fast prediction of induction motor steady-state performance without the need for time-consuming finite-element analyses, the equivalent circuit parameters of the machine need to be calculated, including rotor slot leakage inductances. This paper, in particular, proposes a new improved analytical formula to determine the rotor slot leakage inductance in squirrel-cage induction motors with rectangular-shaped bars. The formula is obtained by solving Poisson's equation in the slot domain. Results are assessed by comparison against Finite Element Analysis (FEA). The precision of the presented methodology is also compared to that of approximated analytical models available from the literature. The comparison shows that the accurate formula proposed is in excellent agreement with FEA with errors below 2%, while the simplified model generally leads to errors above 10% which increase as the height-to-width bar ratio decreases.","PeriodicalId":365573,"journal":{"name":"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved analytical computation of rotor rectangular slot leakage inductance in squirrel-cage induction motors\",\"authors\":\"M. Bortolozzi, L. Branz, A. Tessarolo, C. Bruzzese\",\"doi\":\"10.1109/SMART.2015.7399266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Squirrel-cage induction motors are the most widely used type of electric machinery in industrial applications thanks to their rugged, cheap and robust construction. For the fast prediction of induction motor steady-state performance without the need for time-consuming finite-element analyses, the equivalent circuit parameters of the machine need to be calculated, including rotor slot leakage inductances. This paper, in particular, proposes a new improved analytical formula to determine the rotor slot leakage inductance in squirrel-cage induction motors with rectangular-shaped bars. The formula is obtained by solving Poisson's equation in the slot domain. Results are assessed by comparison against Finite Element Analysis (FEA). The precision of the presented methodology is also compared to that of approximated analytical models available from the literature. The comparison shows that the accurate formula proposed is in excellent agreement with FEA with errors below 2%, while the simplified model generally leads to errors above 10% which increase as the height-to-width bar ratio decreases.\",\"PeriodicalId\":365573,\"journal\":{\"name\":\"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMART.2015.7399266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART.2015.7399266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved analytical computation of rotor rectangular slot leakage inductance in squirrel-cage induction motors
Squirrel-cage induction motors are the most widely used type of electric machinery in industrial applications thanks to their rugged, cheap and robust construction. For the fast prediction of induction motor steady-state performance without the need for time-consuming finite-element analyses, the equivalent circuit parameters of the machine need to be calculated, including rotor slot leakage inductances. This paper, in particular, proposes a new improved analytical formula to determine the rotor slot leakage inductance in squirrel-cage induction motors with rectangular-shaped bars. The formula is obtained by solving Poisson's equation in the slot domain. Results are assessed by comparison against Finite Element Analysis (FEA). The precision of the presented methodology is also compared to that of approximated analytical models available from the literature. The comparison shows that the accurate formula proposed is in excellent agreement with FEA with errors below 2%, while the simplified model generally leads to errors above 10% which increase as the height-to-width bar ratio decreases.