电力系统状态估计中屏蔽粗误差的几何方法

N. Bretas, J. London, L. Alberto, R. Benedito
{"title":"电力系统状态估计中屏蔽粗误差的几何方法","authors":"N. Bretas, J. London, L. Alberto, R. Benedito","doi":"10.1109/PES.2009.5275941","DOIUrl":null,"url":null,"abstract":"In this paper, a geometrical based-index, called undetectability index (UI), that quantifies the inability of the traditional normalized residue test to detect single gross errors is proposed. It is shown that the error in measurements with high UI is not reflected in their residues. This masking effect is due to the “proximity” of a measurement to the range of the Jacobian matrix associated with the power system measurement set. A critical measurement is the limit case of measurement with high UI, that is, it belongs to the range of the Jacobian matrix, has an infinite UI index, its error is totally masked and cannot be detected in the normalized residue test at all. The set of measurements with high UI contains the critical measurements and, in general, the leverage points, however there exist measurements with high UI that are neither critical nor leverage points and whose errors are masked by the normalized residue test. In other words, the proposed index presents a more comprehensive picture of the problem of single gross error detection in power system state estimation than critical measurements and leverage points. The index calculation is very simple and is performed using routines already available in the existing state estimation software. Two small examples are presented to show the way the index works to assess the quality of measurement sets in terms of single gross error detection. The IEEE-14 bus system is used to show the efficiency of the proposed index to identify measurements whose errors are masked by the estimation processing.","PeriodicalId":258632,"journal":{"name":"2009 IEEE Power & Energy Society General Meeting","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Geometrical approach on masked gross errors for power systems state estimation\",\"authors\":\"N. Bretas, J. London, L. Alberto, R. Benedito\",\"doi\":\"10.1109/PES.2009.5275941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a geometrical based-index, called undetectability index (UI), that quantifies the inability of the traditional normalized residue test to detect single gross errors is proposed. It is shown that the error in measurements with high UI is not reflected in their residues. This masking effect is due to the “proximity” of a measurement to the range of the Jacobian matrix associated with the power system measurement set. A critical measurement is the limit case of measurement with high UI, that is, it belongs to the range of the Jacobian matrix, has an infinite UI index, its error is totally masked and cannot be detected in the normalized residue test at all. The set of measurements with high UI contains the critical measurements and, in general, the leverage points, however there exist measurements with high UI that are neither critical nor leverage points and whose errors are masked by the normalized residue test. In other words, the proposed index presents a more comprehensive picture of the problem of single gross error detection in power system state estimation than critical measurements and leverage points. The index calculation is very simple and is performed using routines already available in the existing state estimation software. Two small examples are presented to show the way the index works to assess the quality of measurement sets in terms of single gross error detection. The IEEE-14 bus system is used to show the efficiency of the proposed index to identify measurements whose errors are masked by the estimation processing.\",\"PeriodicalId\":258632,\"journal\":{\"name\":\"2009 IEEE Power & Energy Society General Meeting\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2009.5275941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2009.5275941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种基于几何的指数,称为不可检测指数(UI),用来量化传统归一化残差检验对单个粗差检测的无能性。结果表明,高UI测量的误差不反映在其残留量中。这种掩蔽效应是由于测量值与与电力系统测量集相关的雅可比矩阵的范围“接近”。临界测量是具有高UI的测量的极限情况,即它属于雅可比矩阵的范围,具有无限的UI指标,其误差完全被掩盖,在归一化残差检验中根本检测不到。具有高UI的测量集包含关键测量,通常包含杠杆点,但是存在具有高UI的测量,既不是关键也不是杠杆点,其误差被归一化残差检验掩盖。换句话说,所提出的指标比临界测量和杠杆点更全面地反映了电力系统状态估计中单个粗误差检测问题。索引计算非常简单,并且使用现有状态估计软件中已有的例程来执行。提出了两个小的例子,以显示该指数的工作方式,以评估测量集的质量,在单一的粗误差检测。用IEEE-14总线系统显示了所提出的指标识别被估计处理掩盖误差的测量的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrical approach on masked gross errors for power systems state estimation
In this paper, a geometrical based-index, called undetectability index (UI), that quantifies the inability of the traditional normalized residue test to detect single gross errors is proposed. It is shown that the error in measurements with high UI is not reflected in their residues. This masking effect is due to the “proximity” of a measurement to the range of the Jacobian matrix associated with the power system measurement set. A critical measurement is the limit case of measurement with high UI, that is, it belongs to the range of the Jacobian matrix, has an infinite UI index, its error is totally masked and cannot be detected in the normalized residue test at all. The set of measurements with high UI contains the critical measurements and, in general, the leverage points, however there exist measurements with high UI that are neither critical nor leverage points and whose errors are masked by the normalized residue test. In other words, the proposed index presents a more comprehensive picture of the problem of single gross error detection in power system state estimation than critical measurements and leverage points. The index calculation is very simple and is performed using routines already available in the existing state estimation software. Two small examples are presented to show the way the index works to assess the quality of measurement sets in terms of single gross error detection. The IEEE-14 bus system is used to show the efficiency of the proposed index to identify measurements whose errors are masked by the estimation processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信