{"title":"双线圈无线电力传输系统的谐振耦合分析","authors":"R. Jay, S. Palermo","doi":"10.1109/DCAS.2014.6965345","DOIUrl":null,"url":null,"abstract":"Inductive or non-radiative wireless power transfer (WPT) is a popular short range power delivery mechanism for transcutaneous biomedical implants. In this work, the relative performance of a two-coil WPT system is analyzed with each of the coils in series or parallel resonance. This analysis helps in choosing the optimum resonance configuration for a given pair of coils that can maximize the efficiency of the WPT system. The analysis described in this work shows that for a given pair of coils at a fixed distance apart and with the transmitter coil driven by a source with significant impedance, choosing parallel resonance configuration at the transmitter and receiver coils can offer up to 20dB and 25dB higher efficiencies respectively when compared to the series configurations. Thus, there is scope for improving the WPT efficiency with a simple rearrangement of the circuit components.","PeriodicalId":138665,"journal":{"name":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Resonant coupling analysis for a two-coil wireless power transfer system\",\"authors\":\"R. Jay, S. Palermo\",\"doi\":\"10.1109/DCAS.2014.6965345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inductive or non-radiative wireless power transfer (WPT) is a popular short range power delivery mechanism for transcutaneous biomedical implants. In this work, the relative performance of a two-coil WPT system is analyzed with each of the coils in series or parallel resonance. This analysis helps in choosing the optimum resonance configuration for a given pair of coils that can maximize the efficiency of the WPT system. The analysis described in this work shows that for a given pair of coils at a fixed distance apart and with the transmitter coil driven by a source with significant impedance, choosing parallel resonance configuration at the transmitter and receiver coils can offer up to 20dB and 25dB higher efficiencies respectively when compared to the series configurations. Thus, there is scope for improving the WPT efficiency with a simple rearrangement of the circuit components.\",\"PeriodicalId\":138665,\"journal\":{\"name\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2014.6965345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2014.6965345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resonant coupling analysis for a two-coil wireless power transfer system
Inductive or non-radiative wireless power transfer (WPT) is a popular short range power delivery mechanism for transcutaneous biomedical implants. In this work, the relative performance of a two-coil WPT system is analyzed with each of the coils in series or parallel resonance. This analysis helps in choosing the optimum resonance configuration for a given pair of coils that can maximize the efficiency of the WPT system. The analysis described in this work shows that for a given pair of coils at a fixed distance apart and with the transmitter coil driven by a source with significant impedance, choosing parallel resonance configuration at the transmitter and receiver coils can offer up to 20dB and 25dB higher efficiencies respectively when compared to the series configurations. Thus, there is scope for improving the WPT efficiency with a simple rearrangement of the circuit components.