M. Divandari, F. Shahsavari, M. Rezaeimoghadam, A. Dadpour
{"title":"一种新型高速无刷直流电机模糊动态观测器","authors":"M. Divandari, F. Shahsavari, M. Rezaeimoghadam, A. Dadpour","doi":"10.1109/ELNANO.2013.6552019","DOIUrl":null,"url":null,"abstract":"In this paper, a high performance brushless DC (BLDC) motor drive based on a fuzzy dynamic observer (FDO) is investigated. The FDO acts on the motor current and its gains are corrected by estimating current, rotor position and speed by fuzzy logic control (FLC). FLC is correcting gain's FDO via real time. A PI speed control was chosen due to its low processing time and fast control. In order to reduce the model complexity, the back-EMF is assumed as being trapezoidal in a simplified machine model. The presented drive has been simulated by the MATLAB/SIMULINK software on the high speed BLDC motor model. Simulation results show that the proposed drive is able to estimate the rotor position and speed with high precision when high speeds are considered. Simulation results also show the reliability, fast computation and excellent dynamic performance with using fuzzy logic for high speed BLDC motor.","PeriodicalId":443634,"journal":{"name":"2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel Fuzzy dynamic observer for high speed BLDC motor\",\"authors\":\"M. Divandari, F. Shahsavari, M. Rezaeimoghadam, A. Dadpour\",\"doi\":\"10.1109/ELNANO.2013.6552019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a high performance brushless DC (BLDC) motor drive based on a fuzzy dynamic observer (FDO) is investigated. The FDO acts on the motor current and its gains are corrected by estimating current, rotor position and speed by fuzzy logic control (FLC). FLC is correcting gain's FDO via real time. A PI speed control was chosen due to its low processing time and fast control. In order to reduce the model complexity, the back-EMF is assumed as being trapezoidal in a simplified machine model. The presented drive has been simulated by the MATLAB/SIMULINK software on the high speed BLDC motor model. Simulation results show that the proposed drive is able to estimate the rotor position and speed with high precision when high speeds are considered. Simulation results also show the reliability, fast computation and excellent dynamic performance with using fuzzy logic for high speed BLDC motor.\",\"PeriodicalId\":443634,\"journal\":{\"name\":\"2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELNANO.2013.6552019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2013.6552019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel Fuzzy dynamic observer for high speed BLDC motor
In this paper, a high performance brushless DC (BLDC) motor drive based on a fuzzy dynamic observer (FDO) is investigated. The FDO acts on the motor current and its gains are corrected by estimating current, rotor position and speed by fuzzy logic control (FLC). FLC is correcting gain's FDO via real time. A PI speed control was chosen due to its low processing time and fast control. In order to reduce the model complexity, the back-EMF is assumed as being trapezoidal in a simplified machine model. The presented drive has been simulated by the MATLAB/SIMULINK software on the high speed BLDC motor model. Simulation results show that the proposed drive is able to estimate the rotor position and speed with high precision when high speeds are considered. Simulation results also show the reliability, fast computation and excellent dynamic performance with using fuzzy logic for high speed BLDC motor.