计算电流体力学在制造中空聚合物微结构中的应用

C. Tonry, M. Patel, M. Desmuliez, W. Yu, C. Bailey
{"title":"计算电流体力学在制造中空聚合物微结构中的应用","authors":"C. Tonry, M. Patel, M. Desmuliez, W. Yu, C. Bailey","doi":"10.1109/EUROSIME.2015.7103153","DOIUrl":null,"url":null,"abstract":"Electric Field Assisted Capillarity is a novel process which has the potential for the fabrication of hollow polymer microstructures as a single step process. The process has been shown to work experimentally on a microscale using PDMS. The process makes use of both the electrohydrodynamics of polymers at a microscale and also the capillary force on the polymer caused by a low contact angle on a heavily wetted surface. Discussed in this paper are the results of a two-dimensional numerical simulation of the process. The results presented here are for the an angular mask producing microchannels and demonstrate how differing contact angles on the top mask effect the thickness of the top of the microstructures and also whether the fabrication of the microstructure is possible at all.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational electrohydrodynamics in the fabrication of hollow polymer microstructures\",\"authors\":\"C. Tonry, M. Patel, M. Desmuliez, W. Yu, C. Bailey\",\"doi\":\"10.1109/EUROSIME.2015.7103153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric Field Assisted Capillarity is a novel process which has the potential for the fabrication of hollow polymer microstructures as a single step process. The process has been shown to work experimentally on a microscale using PDMS. The process makes use of both the electrohydrodynamics of polymers at a microscale and also the capillary force on the polymer caused by a low contact angle on a heavily wetted surface. Discussed in this paper are the results of a two-dimensional numerical simulation of the process. The results presented here are for the an angular mask producing microchannels and demonstrate how differing contact angles on the top mask effect the thickness of the top of the microstructures and also whether the fabrication of the microstructure is possible at all.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电场辅助毛细作用是一种新的工艺,具有单步制备中空聚合物微结构的潜力。该工艺已被证明在使用PDMS的微尺度实验中有效。该工艺既利用了聚合物在微观尺度上的电流体动力学,也利用了聚合物上的毛细力,毛细力是由在高度湿润的表面上的低接触角引起的。本文讨论的是该过程的二维数值模拟结果。本文给出的结果是针对产生微通道的角掩模,并演示了顶部掩模上不同的接触角如何影响微结构顶部的厚度,以及微结构的制造是否可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational electrohydrodynamics in the fabrication of hollow polymer microstructures
Electric Field Assisted Capillarity is a novel process which has the potential for the fabrication of hollow polymer microstructures as a single step process. The process has been shown to work experimentally on a microscale using PDMS. The process makes use of both the electrohydrodynamics of polymers at a microscale and also the capillary force on the polymer caused by a low contact angle on a heavily wetted surface. Discussed in this paper are the results of a two-dimensional numerical simulation of the process. The results presented here are for the an angular mask producing microchannels and demonstrate how differing contact angles on the top mask effect the thickness of the top of the microstructures and also whether the fabrication of the microstructure is possible at all.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信