使用曲面积分公式的三维互连的全波电磁特性

U. Patel, Shashwat Sharma, Shunchuan Yang, S. Hum, P. Triverio
{"title":"使用曲面积分公式的三维互连的全波电磁特性","authors":"U. Patel, Shashwat Sharma, Shunchuan Yang, S. Hum, P. Triverio","doi":"10.1109/EPEPS.2017.8329738","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate surface integral equation formulation for modeling interconnects. It accurately captures the skin effect inside conductors using a recently-developed 3D differential surface admittance operator. Numerical results demonstrate that the proposed formulation is significantly more efficient than existing volumetric techniques in terms of computational time and memory consumption.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Full-wave electromagnetic characterization of 3D interconnects using a surface integral formulation\",\"authors\":\"U. Patel, Shashwat Sharma, Shunchuan Yang, S. Hum, P. Triverio\",\"doi\":\"10.1109/EPEPS.2017.8329738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an accurate surface integral equation formulation for modeling interconnects. It accurately captures the skin effect inside conductors using a recently-developed 3D differential surface admittance operator. Numerical results demonstrate that the proposed formulation is significantly more efficient than existing volumetric techniques in terms of computational time and memory consumption.\",\"PeriodicalId\":397179,\"journal\":{\"name\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2017.8329738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种精确的曲面积分方程,用于互连的建模。它使用最近开发的3D差分表面导纳算子准确捕获导体内部的趋肤效应。数值结果表明,在计算时间和内存消耗方面,所提出的公式明显比现有的体积方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-wave electromagnetic characterization of 3D interconnects using a surface integral formulation
This paper presents an accurate surface integral equation formulation for modeling interconnects. It accurately captures the skin effect inside conductors using a recently-developed 3D differential surface admittance operator. Numerical results demonstrate that the proposed formulation is significantly more efficient than existing volumetric techniques in terms of computational time and memory consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信