B. Larrat, M. Pernot, G. Montaldo, M. Fink, M. Tanter
{"title":"基于能量的自适应聚焦:利用磁共振制导的最佳超声聚焦","authors":"B. Larrat, M. Pernot, G. Montaldo, M. Fink, M. Tanter","doi":"10.1063/1.3367125","DOIUrl":null,"url":null,"abstract":"Adaptive focusing of ultrasonic waves is performed under the guidance of a Magnetic Resonance (MR) system. The technique is based on the maximization of the ultrasonic wave intensity at a target point. The wave intensity is indirectly estimated from the local tissue motion induced at the chosen focus by the acoustic radiation force of the ultrasonic beam. A motion sensitive MR sequence is used to measure the resulting local tissue displacements. Based on the transmission of a set of spatially coded ultrasonic waves, a non iterative inversion process is used to estimate the phase aberrations induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) are recovered within acceptable errors (≪0.8 rad). This non invasive technique is shown to accurately correct the phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU.","PeriodicalId":368182,"journal":{"name":"2009 IEEE International Ultrasonics Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy-based adaptive focusing: Optimal ultrasonic focusing using magnetic resonance guidance\",\"authors\":\"B. Larrat, M. Pernot, G. Montaldo, M. Fink, M. Tanter\",\"doi\":\"10.1063/1.3367125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive focusing of ultrasonic waves is performed under the guidance of a Magnetic Resonance (MR) system. The technique is based on the maximization of the ultrasonic wave intensity at a target point. The wave intensity is indirectly estimated from the local tissue motion induced at the chosen focus by the acoustic radiation force of the ultrasonic beam. A motion sensitive MR sequence is used to measure the resulting local tissue displacements. Based on the transmission of a set of spatially coded ultrasonic waves, a non iterative inversion process is used to estimate the phase aberrations induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) are recovered within acceptable errors (≪0.8 rad). This non invasive technique is shown to accurately correct the phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU.\",\"PeriodicalId\":368182,\"journal\":{\"name\":\"2009 IEEE International Ultrasonics Symposium\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3367125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3367125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-based adaptive focusing: Optimal ultrasonic focusing using magnetic resonance guidance
Adaptive focusing of ultrasonic waves is performed under the guidance of a Magnetic Resonance (MR) system. The technique is based on the maximization of the ultrasonic wave intensity at a target point. The wave intensity is indirectly estimated from the local tissue motion induced at the chosen focus by the acoustic radiation force of the ultrasonic beam. A motion sensitive MR sequence is used to measure the resulting local tissue displacements. Based on the transmission of a set of spatially coded ultrasonic waves, a non iterative inversion process is used to estimate the phase aberrations induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) are recovered within acceptable errors (≪0.8 rad). This non invasive technique is shown to accurately correct the phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU.