{"title":"使用重定时和多个电源电压的同步顺序设计中同时峰值和平均功率优化","authors":"Atef Allam, J. Ramanujam","doi":"10.1109/ICICDT.2006.220821","DOIUrl":null,"url":null,"abstract":"In this paper, we present a combination of basic retiming and multiple voltage scheduling (MVS) techniques in order to optimize dynamic peak power as well as average power consumption in synchronous sequential circuits under timing constraints. First, we devise a mixed-integer linear programming (MILP) formulation for the problem of scheduling for optimal peak and/or average power consumption through a unification of retiming and MVS techniques. Then, to alleviate the problem of variable explosion in MILP, we present a two-stage algorithm for peak and average power optimization. First, power-oriented retiming is proposed to restructure the input SDFG in order to achieve parallelization to favor nodes with high power consumption followed by an MILP formulation for peak and/or average power optimization using MVS technique","PeriodicalId":447050,"journal":{"name":"2006 IEEE International Conference on IC Design and Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Peak and Average Power Optimization in Synchronous Sequential Designs Using Retiming and Multiple Supply Voltages\",\"authors\":\"Atef Allam, J. Ramanujam\",\"doi\":\"10.1109/ICICDT.2006.220821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a combination of basic retiming and multiple voltage scheduling (MVS) techniques in order to optimize dynamic peak power as well as average power consumption in synchronous sequential circuits under timing constraints. First, we devise a mixed-integer linear programming (MILP) formulation for the problem of scheduling for optimal peak and/or average power consumption through a unification of retiming and MVS techniques. Then, to alleviate the problem of variable explosion in MILP, we present a two-stage algorithm for peak and average power optimization. First, power-oriented retiming is proposed to restructure the input SDFG in order to achieve parallelization to favor nodes with high power consumption followed by an MILP formulation for peak and/or average power optimization using MVS technique\",\"PeriodicalId\":447050,\"journal\":{\"name\":\"2006 IEEE International Conference on IC Design and Technology\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on IC Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2006.220821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on IC Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2006.220821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous Peak and Average Power Optimization in Synchronous Sequential Designs Using Retiming and Multiple Supply Voltages
In this paper, we present a combination of basic retiming and multiple voltage scheduling (MVS) techniques in order to optimize dynamic peak power as well as average power consumption in synchronous sequential circuits under timing constraints. First, we devise a mixed-integer linear programming (MILP) formulation for the problem of scheduling for optimal peak and/or average power consumption through a unification of retiming and MVS techniques. Then, to alleviate the problem of variable explosion in MILP, we present a two-stage algorithm for peak and average power optimization. First, power-oriented retiming is proposed to restructure the input SDFG in order to achieve parallelization to favor nodes with high power consumption followed by an MILP formulation for peak and/or average power optimization using MVS technique